Effects of Support Composition and Pretreatment Conditions on the Structure of Vanadia Dispersed on SiO$_2$, Al$_2$O$_3$, TiO$_2$, ZrO$_2$, and HfO$_2$

Bryan Olthof, Andrei Khodakov, Alexis T. Bell,* and Enrique Iglesia*‡

Chemical Sciences Division and Material Sciences Division, Lawrence Berkeley National Laboratory, and Department of Chemical Engineering, University of California, Berkeley, California 94720-1462

Received: June 24, 1999; In Final Form: September 24, 1999

Spectroscopic techniques (X-ray absorption, Raman, and UV—visible) were utilized to monitor the effect of adsorbed water, calculation temperature, and reduction in H$_2$ on the structure of dispersed VO$_x$ for vanadia supported on SiO$_2$, Al$_2$O$_3$, TiO$_2$, ZrO$_2$, and HfO$_2$ prepared with VO$_x$ surface densities ranging from 0.46 VO$_x$/nm$^2$ to 11.1 VO$_x$/nm$^2$. Supported vanadia was found to exist as monovanadate, polyvanadate, or V$_2$O$_5$ species, the distribution among these species depending on the support for a given VO$_x$ surface density. Dehydration resulted in the appearance of monovanadate species on all supports, with the extent of these species decreasing in the order HfO$_2$ > Al$_2$O$_3$ > ZrO$_2$ > TiO$_2$ > SiO$_2$. Hydration of the samples caused a decrease in the monovanadate species and a slight increase in polyvanadate species. Oxidation at elevated temperature resulted in an increase in the crystallinity of V$_2$O$_5$ present on SiO$_2$, a conversion of V$_2$O$_5$ into polyvanadate species on Al$_2$O$_3$, and the appearance of mixed-metal oxide phases on TiO$_2$, ZrO$_2$ (ZrV$_2$O$_7$), and HfO$_2$ (HfV$_2$O$_7$). The appearance of an interaction between vanadia and titania coincides with the transformation from anatase to rutile TiO$_2$. ZrV$_2$O$_7$ and HfV$_2$O$_7$ are postulated to form via the interaction of surface VO$_x$ species with the support as the support begins to undergo a phase transition from tetragonal to monoclinic. H$_2$ reduction produced limited changes in the structure of dispersed vanadia except on Al$_2$O$_3$, where V$_2$O$_5$ was transformed into polyvanadate species.

Introduction

Supported vanadium oxide catalysts are active and selective for several partial oxidation reactions, including the selective reduction of NO$_x$ with ammonia and the oxidative dehydrogenation of alkanes.$^{1-3}$ The catalytic properties of these catalysts depend on the structure of the supported vanadium species.$^{2,3}$ Depending on the support material and the VO$_x$ concentration, supported vanadium oxide can exist as isolated tetrahedral monovanadates, one- or two-dimensional polyvanadate domains, or bulk V$_2$O$_5$ crystallites.$^{3}$

Isolated monovanadate structures have been detected at low vanadium coverage on SiO$_2$, Al$_2$O$_3$, TiO$_2$, ZrO$_2$, and HfO$_2$ supports.$^{2-4}$ VO$_x$ species condense into chains or two-dimensional domains and ultimately into bulk V$_2$O$_5$ crystallites as VO$_x$ loading increases.$^{51}$V NMR and Raman spectroscopy show that V$^{5+}$ centers evolve from tetrahedral coordination at low coverage to octahedral coordination at higher coverage on Al$_2$O$_3$ and TiO$_2$.$^{5,6}$ Also the structure of dispersed vanadia changes upon exposure to water vapor.$^{4,7-12}$ Since water is a product of oxidation reactions, the structure of the catalyst under reaction conditions may differ from that in dehydrated samples.

The extent to which water affects the structure of dispersed vanadia depends on the composition of the support and on the temperature at which the exposure to water occurs. SiO$_2$-supported vanadium is especially susceptible to structural changes upon exposure to water at room temperature. Dehydrated MCM-48 materials containing V$^{5+}$ ions change color from white to orange when contacted with H$_2$O at room temperature.$^7$ $^{51}$V NMR and Raman and UV—visible spectroscopies detect changes in SiO$_2$-supported V$^{5+}$ coordination number from four in the dehydrated state to six in the hydrated state.$^{7,8,11,12}$ At room temperature, water has little effect on VO$_x$/Al$_2$O$_3$ and VO$_x$/TiO$_2$ structure.$^{5,6}$ At higher temperature (>393 K), water does not cause detectable changes in VO$_x$/SiO$_2$ structure, but its effect on VO$_x$/Al$_2$O$_3$ and VO$_x$/TiO$_2$ structure becomes significant.$^{10}$

In the absence of water, supported VO$_x$ catalysts undergo structural changes when oxidized at elevated temperatures. As the oxidation temperature increases for highly loaded VO$_x$/ZrO$_2$, the dispersed VO$_x$ reacts with the support to form ZrV$_2$O$_7$.$^{13-15}$ X-ray diffraction (XRD) experiments detect a solid—solid interaction between V$_2$O$_5$ and Al$_2$O$_3$ at high temperatures$^{16,17}$ and surface VO$_x$ have been reported to migrate into TiO$_2$ to form a mixed-metal oxide.$^{18-20}$

This work addresses three issues concerning the structure of vanadia supported on SiO$_2$, Al$_2$O$_3$, TiO$_2$, ZrO$_2$, and HfO$_2$. The first is the effect of hydration—dehydration, the second is the effect of calcination temperature, and the third is the effect of reduction and reoxidation. Raman spectroscopy is used in order to monitor structural changes in the dispersed vanadia as a function of pretreatment conditions. UV—visible spectroscopy is used to detect changes in the domain size of the dispersed vanadia, as this technique has proven to be effective for characterizing the dispersion of metal oxides.$^{21,22}$ Information about the local structure of V$^{5+}$ cations in dispersed vanadia is obtained from X-ray absorption spectra.

Experimental Section

Catalyst samples were prepared via incipient wetness impregnation of support materials with aqueous NH$_4$VO$_3$ solutions.

---

$^*$ To whom correspondence should be addressed. E-mail: bell@cchem.berkeley.edu; iglesia@ccchem.berkeley.edu.

† Chemical Sciences Division.

‡ Material Sciences Division.
TABLE 1: Vanadium Content, Surface Area, and Calculated VO₃ Surface Density for Supported Vanadium Oxide Catalysts Studied

<table>
<thead>
<tr>
<th>Support</th>
<th>Catalyst</th>
<th>V₂O₅ content (wt %)</th>
<th>BET surface area (m²/g)</th>
<th>VO₃ surface density (VO₃/nm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al₂O₃</td>
<td>0.7VO₃/Al₂O₃</td>
<td>0.7</td>
<td>88</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>2VO₃/Al₂O₃</td>
<td>2</td>
<td>100</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>3.5VO₃/Al₂O₃</td>
<td>3.5</td>
<td>100</td>
<td>2.3</td>
</tr>
<tr>
<td></td>
<td>5VO₃/Al₂O₃</td>
<td>5</td>
<td>96</td>
<td>3.5</td>
</tr>
<tr>
<td></td>
<td>10VO₃/Al₂O₃</td>
<td>10</td>
<td>89</td>
<td>7.7</td>
</tr>
<tr>
<td></td>
<td>15VO₃/Al₂O₃</td>
<td>15</td>
<td>86</td>
<td>12.0</td>
</tr>
<tr>
<td>SiO₂</td>
<td>2VO₃/SiO₂</td>
<td>2</td>
<td>287</td>
<td>0.46</td>
</tr>
<tr>
<td></td>
<td>5VO₃/SiO₂</td>
<td>5</td>
<td>283</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>10VO₃/SiO₂</td>
<td>10</td>
<td>271</td>
<td>2.4</td>
</tr>
<tr>
<td></td>
<td>15VO₃/SiO₂</td>
<td>15</td>
<td>251</td>
<td>4.0</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.7VO₃/TiO₂</td>
<td>0.7</td>
<td>73.5</td>
<td>0.63</td>
</tr>
<tr>
<td></td>
<td>2VO₃/TiO₂</td>
<td>2</td>
<td>69.0</td>
<td>1.9</td>
</tr>
<tr>
<td></td>
<td>3.5VO₃/TiO₂</td>
<td>3.5</td>
<td>69.5</td>
<td>3.3</td>
</tr>
<tr>
<td></td>
<td>5VO₃/TiO₂</td>
<td>5</td>
<td>58</td>
<td>5.7</td>
</tr>
<tr>
<td>ZrO₂</td>
<td>2VO₃/ZrO₂</td>
<td>2</td>
<td>144</td>
<td>0.92</td>
</tr>
<tr>
<td></td>
<td>5VO₃/ZrO₂</td>
<td>5</td>
<td>155</td>
<td>2.1</td>
</tr>
<tr>
<td></td>
<td>10VO₃/ZrO₂</td>
<td>10</td>
<td>170</td>
<td>3.9</td>
</tr>
<tr>
<td></td>
<td>15VO₃/ZrO₂</td>
<td>15</td>
<td>160</td>
<td>6.2</td>
</tr>
<tr>
<td>HfO₂</td>
<td>1.2VO₃/HfO₂</td>
<td>1.2</td>
<td>62</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>3VO₃/HfO₂</td>
<td>3</td>
<td>79</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>6.1VO₃/HfO₂</td>
<td>6.1</td>
<td>125</td>
<td>3.2</td>
</tr>
<tr>
<td></td>
<td>9.4VO₃/HfO₂</td>
<td>9.4</td>
<td>115</td>
<td>5.4</td>
</tr>
</tbody>
</table>

(99%, Aldrich, Inc.). Oxalic acid was added to these solutions (Mallinkrodt, analytical grade; NH₄VO₃/oxalic acid = 0.5 molar) in order to ensure complete dissolution of ammonium metavanadate precursors. SiO₂ (Davison Chemical), Al₂O₃ (Degussa, AG), and TiO₂ (Sud-Chemie, AG) supports were obtained from commercial sources. Zirconium (ZrO(OH)₂) and hafnium (HfO(OH)₂) oxyhydroxides were prepared by coprecipitation at pH 10 from the corresponding oxochlorides. After impregnation, samples were dried overnight in air at 393 K and treated in flowing dry air at 773 K for 3 h. OV[OSi(O’Bu)₃] was used as a reference compound for UV–visible and X-ray absorption studies, to characterize isolated tetrahedrally coordinated vanadyl groups.

Surface areas were measured in a N₂ physisorption flow apparatus using thermal conductivity detection and multipoint BET analysis methods. Samples were dehydrated in He at 473 K for 1 h before surface area measurements.

Diffuse reflectance UV–visible spectra were obtained with a Varian-Cary 4 spectrophotometer equipped with a Harrick diffuse-reflectance attachment, using MgO as a reference. Catalyst samples were placed in a cell equipped with a heater, water-cooling system, thermocouple, and gas flow system for in situ characterization. Spectra of hydrated samples were measured at ambient conditions. These samples were then dehydrated by treatment in flowing dry air at 723 K for 1 h. Dehydrated samples were cooled to room temperature in flowing dry air before obtaining spectra.

X-ray absorption measurements were carried out at the Stanford Synchrotron Radiation Laboratory using beamline 2-3. Dehydration was carried out in a cell equipped with a thin (1 mm) quartz capillary to contain the catalyst.24 The capillary is connected to a gas manifold and is surrounded by a heater so that the sample can be treated in situ at temperatures of up to 773 K. The absorption spectrum was measured at the K edge of vanadium (5463 eV) in the fluorescence mode using a double crystal (Si(111)) monochromator. Two ion chambers were employed for X-ray detection. The first was filled with He and placed before the cell in order to measure the intensity of the beam before absorption. A second chamber, filled with Ar and situated at a 90° angle incident from the X-ray beam, was used to measure the fluorescence emission from samples.

Raman spectra were obtained using a HoloLab 5000 Research Raman spectrometer (Kaiser Optical Systems, Inc.) with a 532 nm solid-state laser (Coherent Laser Group). Backscattered light was measured with a thermoelectrically cooled CCD detector (Princeton Instruments, Inc.). Spectra were acquired over the range 0–4000 cm⁻¹ using 50 mW and a spectral collection time of 5 min or less. Catalyst samples (~0.1 g) were pressed at 70 MPa into 9 mm diameter by 1 mm thick wafers. Wafers were placed on a rotating stage within a reactor fitted with a Suprasil quartz optical window. The stage was mounted on the end of a ceramic rod fitted to a magnetically coupled rotary motion feedthrough device (Huntington Mechanical Laboratories). Rotation speed was controlled between 20 and 500 rpm with a power supply and step motor driver (Applied Motion Products). The reactor could be heated to 973 K using two 150 W semicylindrical radiant ceramic heaters (Omega Engineering, Inc.). The reactor was attached to a gas manifold in order to allow in situ characterization. Gases were obtained from Bay Airgas (He, 99.999%; O₂, 99.994%; H₂, 99.999%) and purified using 13X molecular sieve traps (Matheson 451).

Results

Effects of Hydration and Dehydration. Table 1 provides a summary of vanadia weight loading, catalyst surface area, and calculated VO₃ surface density for all catalysts studied.2 UV–visible spectra of hydrated and dehydrated 15VO₃/SiO₂ are shown in Figure 1; they are representative of the data recorded for all samples. Included in Figure 1 are spectra of bulk V₂O₅ and of OV(OSi(O’Bu)₃), which provide reference absorption edge energy values for V²⁺ species in extended square pyramidal structures and in isolated tetrahedral environments, respectively. The calculation of absorption edge follows the procedure described in detail by Barton et al.26 Reflectance data are converted into absorption spectra through the Kubelka–Munk function \( F(R_m) \). Absorption edge energies are then calculated by extrapolating to zero energy a linear least-squares fit of the low-energy section of a graph of \( F(R_m)hv^{1/2} \) versus \( hv \), in accordance with the procedure for amorphous semiconductors with indirect electronic transitions.\( ^{26–28} \) The spectra in Figure 1 are plotted as \( F(R_m)hv^{1/2} \) versus \( hv \) and they are shown with the linear fit of the low-energy edge. Charge transfer bands in Al₂O₃, SiO₂, HfO₂, and ZrO₂ occur at much higher energies.
than for VO, species, and they do not interfere with the analysis of the absorption edge regions of VO, centers. The charge transfer band of TiO$_2$ (3.17 eV) does overlap with bands corresponding to VO, species. To calculate the contribution of V$^{5+}$ species to the UV–visible spectrum, a pure TiO$_2$ spectrum was subtracted from that of VO$_x$/TiO$_2$ samples.$^2$

Values of the absorption edge for hydrated and dehydrated samples are given in Figure 2. Edge energies for all hydrated samples decrease as VO$_x$ surface density increases, consistent with the growth in domain size expected as more vanadia is deposited on the surface.$^{21,22}$ Dehydration of all catalysts leads to an increase in the absorption edge energy, indicating a decrease in vanadium domain size or a change in the coordination of the vanadium cations. The magnitude of this shift depends on the support material and the surface density of VO$_x$ species. On SiO$_2$-supported samples, an edge shift of 0.4 eV is observed upon dehydration at the lowest vanadia loading, and this shift decreases with increasing VO$_x$ surface density. On Al$_2$O$_3$ and ZrO$_2$ supported samples, the edge shift shows no discernible trend with VO$_x$ loading and all shifts are smaller.

Figure 2. Absorption edge energies measured for hydrated and dehydrated vanadium catalysts: (a) VO$_x$/SiO$_2$; (b) VO$_x$/Al$_2$O$_3$; (c) VO$_x$/TiO$_2$; (d) VO$_x$/ZrO$_2$; (e) VO$_x$/HfO$_2$.
than 0.2 eV. On HfO$_2$ supported samples, the edge shift following dehydration increases with VO$_x$ loading, reaching a maximum of 0.3 eV at the highest surface density studied. After in situ characterization, exposure of catalyst samples to ambient air for 2 h restores the UV–visible spectra to that of the hydrated samples. Identical treatments of bulk V$_2$O$_5$ do not lead to detectable changes in the UV–visible spectra.

Near-edge X-ray absorption spectra of hydrated VO$_x$/SiO$_2$, VO$_x$/Al$_2$O$_3$, and VO$_x$/ZrO$_2$ are shown in Figure 3. The position of edge and pre-edge features reflects the local coordination of vanadium atoms. Included in Figure 3b are near-edge spectra of V$_2$O$_5$ and NH$_4$VO$_3$ compounds with known V$^{5+}$ coordination. The near-edge spectra of all hydrated SiO$_2$-supported catalysts are nearly identical, and they resemble the spectrum of V$_2$O$_5$. It appears that, at all VO$_x$ surface densities, vanadium coordination in hydrated VO$_x$/SiO$_2$ resembles that in V$_2$O$_5$ (square pyramidal V$^{5+}$). As VO$_x$ surface density increases, the near-edge spectrum of hydrated VO$_x$/Al$_2$O$_3$ shifts from one resembling that of NH$_4$VO$_3$ (tetrahedral V$^{5+}$) to one resembling V$_2$O$_5$ (square pyramidal V$^{5+}$). The near-edge spectra of all hydrated VO$_x$/ZrO$_2$ catalysts are similar and resemble the spectrum of NH$_4$VO$_3$ more than that of V$_2$O$_5$, suggesting that tetrahedral VO$_x$ species remain even after exposure to H$_2$O at room temperature.

Near-edge spectra of hydrated and dehydrated catalysts with similar VO$_x$ surface density (4–7.7 VO$_x$/nm$^2$) are shown in Figure 4. Dehydration leads to a shift in the K-edge spectra from that resembling V$_2$O$_5$ to that representative of isolated vanadyl species such as those found in the compound NH$_4$-VO$_3$. This effect is more pronounced for SiO$_2$ and Al$_2$O$_3$ supported vanadia than for ZrO$_2$ or HfO$_2$ supported vanadia.

Raman spectra of hydrated and dehydrated samples with similar VO$_x$ surface density (4–7.7 VO$_x$/nm$^2$) are shown in Figure 5. All spectra were acquired while the sample was rotated at ~400 rpm in order to limit dehydration caused by laser heating. All samples, except for 5VO$_x$/TiO$_2$, show Raman bands near 144, 285, 407, 486, 525, 699, and 995 cm$^{-1}$ typical of V$_2$O$_5$ crystallites. None of the hydrated samples produce a clear monovanadate band, normally present around 1020–1040 cm$^{-1}$. Hydrated 15VO$_x$/SiO$_2$ exhibits a shoulder at 1020 cm$^{-1}$ arising, perhaps, from partial dehydration and formation of monovanadate species due to laser heating. The sample also produces a very weak, broad band centered at 1040 cm$^{-1}$, as well as a shoulder on the low wavenumber side of the V$_2$O$_5$ peak at 994 cm$^{-1}$. Upon dehydration, the peaks assigned to V$_2$O$_5$ become narrower and more intense and a sharp peak at 1039 cm$^{-1}$, assigned to V=O stretching in monovanadate species, appears. A band is also observed at 1060 cm$^{-1}$. This feature has been reported previously but cannot be assigned unambiguously.

Hydrated 10VO$_x$/Al$_2$O$_3$ shows a weak, broad band centered on 828 cm$^{-1}$, as well as a shoulder on the low wavenumber side of the V$_2$O$_5$ peak at 994 cm$^{-1}$. The latter peak can be assigned to V=O stretching in polyvanadate structures, but the former might be attributable to either V=O–V or V=O–M stretching modes in polymeric vanadina. Upon dehydration, a peak appears at 1032 cm$^{-1}$, indicating the evolution of isolated monovanadate species, while a broad feature in the 800–1000 cm$^{-1}$ region suggests the presence of polyvanadate domains. No significant changes in V$_2$O$_5$ peaks are detected upon dehydration.

Hydrated 5VO$_x$/TiO$_2$ produces two poorly resolved bands centered at about 800 and 900 cm$^{-1}$, indicating the presence of polyvanadate species. Raman intensity in the region of 800 cm$^{-1}$ may also be due to second-order scattering from TiO$_2$ (2 × 400 cm$^{-1}$). Upon dehydration, the broad polyvanadate bands remain, but the band centered near 900 cm$^{-1}$ becomes less intense. The appearance of a peak at 1022 cm$^{-1}$ indicates the formation of monovanadate species. Four peaks at 149, 395, 511, and 639 cm$^{-1}$ attributable to anatase TiO$_2$ do not change throughout hydration–dehydration cycles.

Hydrated 15VO$_x$/ZrO$_2$ and 9.4VO$_x$/HfO$_2$ exhibit broad Raman bands in the region of 750–1000 cm$^{-1}$ typical of polyvanadate domains.
species. The ZrO$_2$ supported catalyst exhibits a peak at 772 cm$^{-1}$ attributable to ZrV$_2$O$_7$ and the HfO$_2$ supported sample exhibits an analogous peak at 800 cm$^{-1}$ assigned to HfV$_2$O$_7$. Upon dehydration, V$_2$O$_5$ peaks in both samples decrease in intensity relative to the polyvanadate and (Zr/Hf)V$_2$O$_7$ peaks. The center of each polyvanadate peak shifts to a slightly higher frequency (906 to 926 cm$^{-1}$ on ZrO$_2$; 923 to 940 cm$^{-1}$ on HfO$_2$). The concurrent appearance of a Raman band attributable to V$_{d}$O stretching in monovanadate species and the observed strengthening of V$_{d}$O bonds in polyvanadate species upon dehydration suggest that these bonds are the most susceptible to hydration.

Effects of Oxidation and Reduction. The effects of treating supported vanadia in air at progressively higher temperatures and the influence of reduction in H$_2$ at 723 K were investigated using samples with a vanadia surface density between 4 and 7.7 VO$_x$/nm$^2$, corresponding to approximately 0.5 to 1.0 polyvanadate monolayers. Raman spectra of 15VO$_x$/SiO$_2$ (3.95 VO$_x$/nm$^2$) taken in flowing 10% O$_2$/He at 723, 823, and 923 K are shown in Figure 6, top. High surface area, amorphous SiO$_2$ is a poor Raman scatterer, and no peaks attributable to Si–O stretches are detected. Peaks at 143, 282, 406, 489, 524, 694, and 993 cm$^{-1}$ indicative of V$_2$O$_5$ are present in the spectra acquired at 723 and 823 K. These two spectra also show a peak at 1035 cm$^{-1}$ characteristic of V=O stretching in monovanadate species. These results are consistent with previous studies which report that vanadia interacts weakly with SiO$_2$ and tends to form coexisting monovanadate species and crystalline V$_2$O$_5$ at high weight loadings without the intermediate formation of two-dimensional polyvanadate domains. The only significant change is seen in the Raman spectrum taken at 923 K. At this temperature, near the melting point of V$_2$O$_5$ (963 K), peaks attributable to V–O–V, V=O, and V–O stretches in V$_2$O$_5$ completely disappear and the monovanadate peak shifts to 1018 cm$^{-1}$.

UV–visible absorption edges for the SiO$_2$ supported sample (Table 3) are present at 2.1 and 2.8 eV after oxidation at 723 K for 1 h. This suggests that the V$_2$O$_5$ detected by Raman exists in different domain sizes, perhaps as bulk V$_2$O$_5$ and as a monolayer-type sheet of V$_2$O$_5$. Only one UV–visible absorption edge remains after treatment in air at 923 K. The edge at 2.0 eV, which is equivalent to that of V$_2$O$_5$, suggests that amorphous vanadia, as well as monovanadate species, condense into a six-coordinate overlayer structure resembling bulk V$_2$O$_5$ on SiO$_2$ when silica-supported vanadia is treated at temperatures high enough to allow surface rearrangement. Raman results support this proposal. The middle panel of Figure 6 compares Raman spectra taken at 298 K of 15VO$_x$/SiO$_2$ after oxidation at 723 and 923 K. V$_2$O$_5$ peaks that were absent in spectra acquired at 923 K (Figure 6, top) reappear after cooling and are higher in intensity and sharpness than V$_2$O$_5$ peaks produced by the sample oxidized at 723 K. One particular difference is the increase in intensity of the peak at 510 cm$^{-1}$ which has previously been assigned to V–O–V stretching in V$_2$O$_5$.

After oxidation at 723 K (100 cm$^3$/min of 10% O$_2$/He for 1 h), the SiO$_2$ supported sample was exposed to cycles of

![Figure 4. XANES spectra before and after dehydration for (a) 15VO$_x$/SiO$_2$, (b) 10VO$_x$/Al$_2$O$_3$, (c) 15VO$_x$/ZrO$_2$, and (d) 9.4VO$_x$/HfO$_2$.](image-url)
reduction (100 cm$^3$/min of 10% H$_2$/He for 2 h) and oxidation (100 cm$^3$/min of 10% O$_2$/He for 3 h) at 723 K. Raman spectra of the sample taken in dry He at 373 K after each treatment are shown in Figure 6, bottom panel. Peaks corresponding to V$_2$O$_5$ sharpen upon reduction and the monovanadate peak at 1035 cm$^{-1}$ decreases in intensity relative to the V$_2$O$_5$ peaks. Only one UV-visible absorption edge energy (2.9 eV) is present following reduction (Table 4). Reoxidation restores the UV-visible edge energy at 2.1 eV and increases the Raman intensity of monovanadate peaks, indicating that structural changes induced by reduction are reversible.

10VO$_x$/Al$_2$O$_3$ (7.7 VO$_x$/nm$^2$). Raman spectra of 10VO$_x$/Al$_2$O$_3$ taken in flowing 10% O$_2$/He at 723, 823, and 923 K are shown in Figure 7, top panel. γ-Al$_2$O$_3$, like SiO$_2$, is a poor Raman scatterer and no peaks attributable to Al$_2$O$_3$ are observed in the spectra. At 723 K, peaks at 140, 282, 406, 521, 696, and 993 cm$^{-1}$ indicate the presence of V$_2$O$_5$; the peak at 1027 cm$^{-1}$ indicates the presence of monovanadate units, and a weak broad
band in the 750–950 cm\(^{-1}\) region suggests the presence of polyvanadate species on the Al\(_2\)O\(_3\) support. Upon heating to 823 and 923 K, the V\(_2\)O\(_5\) peaks disappear while the broad polyvanadate peak separates into two peaks centered at \(\sim 770\) and \(\sim 880\) cm\(^{-1}\).

The middle panel of Figure 7 shows that higher oxidation temperatures lead to improved vanadia dispersion on Al\(_2\)O\(_3\). After oxidizing at 723 K, V\(_2\)O\(_5\) predominates on the surface, with some evidence of polyvanadate environments. Oxidizing at 923 K converts V\(_2\)O\(_5\) species into polyvanadate arrays.

The UV–visible absorption edges for the Al\(_2\)O\(_3\) supported sample (Table 3) are present at 2.3 and 2.5 eV after oxidation at 723 K for 1 h. The higher absorption edge energy, relative to that seen for VO\(_x\)/SiO\(_2\), suggests that the V\(_2\)O\(_5\) seen in the Raman spectra of VO\(_x\)/Al\(_2\)O\(_3\) exist in smaller domains than V\(_2\)O\(_5\) on SiO\(_2\). Oxidizing at 923 K produces no detectable change in the UV–visible absorption spectrum (Table 3).
shown in the middle panel of Figure 7 clearly show, however, that the dispersed V$_2$O$_5$ changes its structure when treated at high enough temperature. On Al$_2$O$_3$, this results in transformation of V$_2$O$_5$ into polyvanadate species, while on SiO$_2$ it leads to the formation of crystalline V$_2$O$_5$ overlayers, suggesting that vanadia wets the surface of Al$_2$O$_3$ more effectively than the surface of SiO$_2$.

After oxidation at 723 K (100 cm$^3$/min of 10% O$_2$/He for 1 h), the 10VO$_x$/Al$_2$O$_3$ sample was exposed to reduction (100 cm$^3$/min of 10% H$_2$/He for 2 h) and oxidation (100 cm$^3$/min of 10% O$_2$/He for 3 h) cycles at 723 K. Raman spectra of the sample taken in dry He at 373 K after each treatment are shown in Figure 7, bottom panel. Reduction results in the disappearance of the V$_2$O$_5$ peaks and the development of two polyvanadate peaks centered at ~770 and ~910 cm$^{-1}$, similar to those observed after oxidation at elevated temperatures.

V$_2$O$_5$ peaks reappear following reoxidation but the intensities of the bands for this species are less intense compared with those for monovanadate species, than in the spectrum of the freshly oxidized sample (Figure 7, bottom). The broad polyvanadate peak is also more intense than that for the freshly oxidized sample, but less intense than that for the reduced sample. This indicates that some of the polyvanadate species generated by the reduction of V$_2$O$_5$ have not reoxidized to the original V$_2$O$_5$ state. This observation could be explained by the results of Andersen and Kung, who found that reoxidation conditions have a significant effect on the extent of reoxidation for VO$_x$/Al$_2$O$_3$. Specifically, these authors found that reoxidation temperatures had to be raised above reduction temperatures to achieve full reoxidation.37

5VO$_x$/TiO$_2$ (5.7 VO$_x$/nm$^2$). Raman spectra of 5VO$_x$/TiO$_2$ taken in flowing 10% O$_2$/He at 723, 823, and 923 K are shown in the top panel of Figure 8. All spectra show peaks at 149, 394, 512, and 636 cm$^{-1}$ indicative of the anatase phase of TiO$_2$.4,13 Spectra are displayed after background subtraction in the region of 730–1100 cm$^{-1}$ in order to amplify the portion of the spectrum arising from vanadia. At 723 K, the broad band from 800 to 1000 cm$^{-1}$ indicates the presence of polyvanadate species and the weak band at 1022 cm$^{-1}$ indicates the presence of isolated monovanadate units.4 After heating to 823 K, the peak at 1022 cm$^{-1}$ decreases in intensity but the polyvanadate peak remains unchanged. At 923 K, the polyvanadate region separates into two bands centered at ~800 and ~915 cm$^{-1}$ and the TiO$_2$ peaks decrease in relative intensity. The middle panel of Figure 8 illustrates these changes more clearly by comparing spectra taken at 298 K after treatment at 723 and 923 K. After calcining at 923 K, the polyvanadate region exhibits two separate peaks, centered at ~810 and ~930 cm$^{-1}$. It also appears that TiO$_2$ has begun a phase transition, evidenced by the broad peak at 444 cm$^{-1}$ and a shoulder at 608 cm$^{-1}$ attributable to rutile TiO$_2$.13,18 The transformation of TiO$_2$ from anatase to rutile would explain the sharp drop in surface area after calcination at 923 K (Table 2).

The absorption edge energy for the TiO$_2$ supported sample (Table 3) appears at 2.3 eV after oxidation at 723 K for 1 h. Higher calcination temperatures do not produce detectable changes in the absorption edge energy.

These results agree with previous studies of VO$_x$/TiO$_2$ catalysts, which indicate that TiO$_2$ disperses vanadia well. Monovanadate and polyvanadate species with 5-fold coordination form on TiO$_2$.4,38 An earlier oxidation study utilizing Raman and UV–visible spectroscopy showed the formation of vanadium–titanium mixed oxides, in which TiO$_2$ retains the anatase structure.18 Other investigators have observed the formation of a mixed oxide of vanadia with rutile TiO$_2$.19,20 As the oxidation temperature is increased, the transition from anatase to rutile is caused by the migration of vanadia into the TiO$_2$ lattice. The spectra presented here show some evidence of rutile formation. The migration of vanadia into the TiO$_2$ lattice could explain the decrease in intensity of the monovanadate peak seen in Figure 6, but not the collapse in surface area (Table 2). Thus,
it seems likely that the migration of vanadia into TiO₂ occurs concurrently with the transformation of TiO₂ from anatase to rutile.

After oxidizing at 723 K (100 cm³/min of 10% O₂/He for 1 h) the TiO₂ supported sample was subjected to reduction (100 cm³/min of 10% H₂/He for 2 h) and oxidation (100 cm³/min of 10% O₂/He for 3 h) cycles at 723 K. Raman spectra taken in dry He at 373 K after each treatment are shown in the bottom panel of Figure 8. The four peaks arising from anatase TiO₂ do not change upon reduction or reoxidation. The peak at 1022 cm⁻¹ attributed to monovanadate species in the oxidized sample is no longer present after reduction. Reoxidation does not produce significant changes in the spectrum of the reduced sample. This would suggest that hydrogen reduction either forms a stable, anatase, mixed-metal oxide or induces monovanadate polymerization. Alternatively, a VOₓ-rutile TiO₂ species may be forming, but not enough TiO₂ has undergone transition to produce a detectable change in the Raman spectrum.

The UV-visible absorption edge shifts from 2.3 to 2.9 eV upon reduction by hydrogen at 723 K (Table 4), indicating a decrease in the domain size of surface vanadia species. This agrees well with the mechanism proposed by Went et al. which involves reduction of monomeric and polymeric vanadia from 5-fold to 4-fold coordination centers.³⁹ Reoxidation restores the UV-visible absorption edge to 2.3 eV, indicating that the largest vanadia domains are restored upon reoxidation. Combined with the Raman results, this suggests that after reoxidation all surface vanadia is present as extended polyvanadate domains. Vanadate species initially present as tetrahedral monovanadate units have either migrated into the TiO₂ or polymerized to form polyvanadate domains.

\[
15VO_x/ZrO_2 (6.2 \text{ VO}_x/\text{nm}^2) . \quad \text{Raman spectra of } 15VO_x/ZrO_2 \text{ taken under flowing } 10\% \text{ O}_2/\text{He at 723, 823, and 923 K are shown in the top panel of Figure 9. The sample treated at 723 K shows a peak at 1028 cm}^{-1}, \text{ indicative of monovanadate species, and a broad band from 700 to 980 cm}^{-1}, \text{ indicative of polyvanadate species. After heating to 823 and 923 K, this broad band decreases in intensity, while two peaks at 778 and 977 cm}^{-1}, \text{ attributed to ZrV}_2\text{O}_7, \text{ appear.}^{13,14} \text{ A shoulder at 1030 cm}^{-1} \text{ on the 977 cm}^{-1} \text{ peak suggests the presence of monovanadate species along with ZrV}_2\text{O}_7. \text{ The changes seen in the Raman spectrum occur simultaneously with a sharp decrease in the surface area (Table 2).}
\]
Spectrum a in the middle panel of Figure 9 shows the 15VO/ZrO₂ sample at 298 K after oxidation at 723 K. Peaks at 175, 330, 477, and 648 cm⁻¹ indicate ZrO₂ in its tetragonal structure. Spectrum b in the same figure shows the 15VO/ZrO₂ sample at 298 K after oxidation at 923 K. Peaks appear at 266 and 358 cm⁻¹, indicating the transition from tetragonal to monoclinic ZrO₂. These results agree with Sohn et al., who reported ZrV₂O₇ formation at similar temperatures, along with the transition of ZrO₂ from its tetragonal to its monoclinic phase. The results here suggest that ZrV₂O₇ is formed by polyvanadate surface species interacting with ZrO₂ as it starts to form a monoclinic phase.

The UV-visible absorption edge for the ZrO₂ supported sample (Table 3) appears at 2.3 eV after oxidization at 723 K, with higher calcination temperatures leading to a slight decrease in the absorption edge energy. This suggests that formation of ZrV₂O₇ does not significantly alter the domain size of surface V⁵⁺ centers.

After oxidation at 723 K (100 cm³/min of 10% O₂/He for 1 h), the ZrO₂-supported sample was exposed to reduction (100 cm³/min of 10% H₂/He for 2 h) and oxidation (100 cm³/min of 10% O₂/He for 3 h) cycles at 723 K. Raman spectra of the sample taken in flowing He at 373 K after each treatment are shown in Figure 9, bottom panel. Upon reduction, peaks at 143 and 995 cm⁻¹ are no longer present, indicating the reduction of V₂O₃. Peaks for ZrO₂ and for monovanadate and polyvanadate species do not change upon reduction. After reoxidation, the two V₂O₃ peaks return to their original intensity, indicating that reduction and oxidation are entirely reversible in ZrO₂-supported samples.

Reduction at 723 K does not influence the main absorption edge at 2.3 eV (Table 4). This behavior is consistent with that of the oxidation experiments; VO₅-type species linked in polyvanadate domains retain their connectivity following reduction or formation of ZrV₂O₇.

9.4VOₓ/HfO₂ (5.4 VOₓ/µm²). Raman spectra of 9.4VOₓ/HfO₂ taken in flowing 10% O₂/He at 723, 823, and 923 K are shown in the top panel of Figure 10. At 723 and 823 K, a peak at 1027 cm⁻¹ indicates the presence of monovanadate species, a broad band from 820 to 980 cm⁻¹ indicates the presence of polyvanadate species, and a peak at 800 cm⁻¹ is attributed to hafnium vanadate (HfV₂O₇). At 923 K, three bands at 271, 380, and 510 cm⁻¹ corresponding to monoclinic HfO₂ appear. The Raman spectrum is dominated, however, by two sharp peaks at 800 and 993 cm⁻¹. Spectra taken at 298 K after treatment at 723 and 923 K are shown in Figure 10, middle panel, to illustrate the changes in VOₓ/HfO₂ structure induced by oxidation at higher temperature.

On the basis of the similarity between these results and those reported here for ZrV₂O₇ formation, it appears that the two peaks at 800 and 993 cm⁻¹ are indicative of HfV₂O₇, a compound isostructural with ZrV₂O₇. Both ZrV₂O₇ and HfV₂O₇ exist in a NaCl cubic structure composed of M⁴⁺ and V₂O₇⁻⁻ ions. In this structure, V⁵⁺ ions exist in tetrahedral coordination and M⁴⁺ ions exist in octahedral coordination. As with ZrV₂O₇, the formation of HfV₂O₇ occurs concurrently with the transition of the support to its monoclinic phase, as evidenced by both Raman results and by the concurrent decrease in the surface area of these samples (Table 2). This would suggest that HfV₂O₇ and ZrV₂O₇ are formed via similar pathways.

The assignment of the two bands at 800 and 993 cm⁻¹ to HfV₂O₇ is based on an analogy to the vibrational mode analysis of M⁴⁺P₂O₇⁻⁻ compounds published by Hubin and Tarte. These authors analyzed M⁴⁺P₂O₇⁻⁻ compounds (M = Ti, Zr, Hf) to establish the effect of the metal cation on the internal vibrations of P₂O₇. They found that the PO₃ vibration frequencies increased from 980 and 1116 cm⁻¹ to 991 and 1132 cm⁻¹ when M was changed from Zr to Hf. These shifts correspond very well with the shifts reported here for vanadate frequencies in ZrV₂O₇ and HfV₂O₇. The lower of the two main bands shifts from 778 to 800 cm⁻¹ while the higher band shifts from 977 to 993 cm⁻¹.
The UV–visible absorption edge energy for 9.4VO₂/HfO₂ (Table 3) is present at 2.7 eV after oxidation at 723 K for 1 h. Higher oxidation temperatures lead to a decrease in the UV–visible absorption edge energy, perhaps due to a loss in surface area and the subsequent linking of VO₂ surface groups.

After oxidation at 723 K (100 cm³/min of 10% O₂/He for 1 h), a HfO₂-supported sample was subject to reduction (100 cm³/min of 10% H₂/He for 2 h) and oxidation (100 cm³/min of 10% O₂/He for 3 h) cycles at 723 K. Raman spectra of the sample taken in flowing He at 373 K after each treatment are shown in the bottom panel of Figure 10. As with VO₂/ZrO₂, reduction in H₂ leads to the disappearance of VO₂ peaks followed by their reappearance after reoxidation. There is no evidence of reduction of either HfO₂ or of the other vanadia species on the HfO₂ support, and the reduction does not alter the UV–visible absorption edge energy (Table 4).

Discussion

In agreement with previous reports, the structure of supported vanadia exposed to ambient air depends on the support material and on the VO₂ surface density. On SiO₂, the primary structures detected by Raman spectroscopy are crystalline VO₂ and very small amounts of polyvanadate species. The proportion of VO₂ grows with increasing vanadia surface density, as evidenced by both Raman spectroscopy and near-edge X-ray absorption spectroscopy (XANES). The absolute value of the UV–visible absorption edge energy is similar to that of VO₂ and approaches that of V₂O₅. In agreement with previous reports, the structure of hydrated VO₂/SiO₂ resembles that detected on SiO₂, the only difference being a somewhat higher concentration of polyvanadate species than on VO₂/SiO₂. Consistent with this picture, the UV–visible absorption edge energy increases with increasing vanadia surface density and asymmetrically approaches that of VO₂. In contrast, hydrated VO₂/TiO₂, VO₂/ZrO₂, and VO₂/HfO₂ are present primarily as polyvanadate species; on ZrO₂ and HfO₂, they coexist with small amounts of VO₂. Small amounts of ZrVO₂ and HfVO₂ are also evident in the samples of high surface density (>5 VO₂/nm²) when vanadia is supported on ZrO₂ and HfO₂.

The structure of hydrated VO₂/Al₂O₃ also changes with VO₂ surface density. At low surface densities (<1 VO₂/nm²), polyvanadate species coexist with a small amount of VO₂. As VO₂ density increases, the structure of the dispersed vanadia resembles that detected on SiO₂, the only difference being a somewhat higher concentration of polyvanadate species than on VO₂/SiO₂. Consistent with this picture, the UV–visible absorption edge energy decreases with increasing vanadia surface density and asymmetrically approaches that of VO₂. In contrast, hydrated VO₂/TiO₂, VO₂/ZrO₂, and VO₂/HfO₂ are present primarily as polyvanadate species; on ZrO₂ and HfO₂, they coexist with small amounts of VO₂. Small amounts of ZrVO₂ and HfVO₂ are also evident in the samples of high surface density (>5 VO₂/nm²) when vanadia is supported on ZrO₂ and HfO₂.

Dehydration of supported vanadia results in several characteristic changes on all supports. The UV–visible absorption edge energy increases, consistent with a decrease in the average size of the vanadia domains and slight changes in the coordination of the vanadium cations. This effect is most pronounced for VO₂/SiO₂ and VO₂/TiO₂, and for the higher density samples of VO₂/HfO₂, but is relatively small for VO₂/Al₂O₃ and VO₂/ZrO₂. Raman spectroscopy shows that in all cases a band at around 1030 cm⁻¹ appears upon dehydration, characteristic of isolated monovanadate species. For SiO₂ and Al₂O₃ supported VO₂, Raman spectroscopy also reveals a decrease in the concentration of polyvanadate species relative to VO₂. For vanadia dispersed on ZrO₂ and HfO₂, however, the proportion of VO₂ appears to decrease relative to polyvanadate species upon dehydration of the samples, this trend being more pronounced for vanadia supported on HfO₂.

The effects of dehydration on the structure of dispersed vanadia reported here can be interpreted in the following manner. The appearance of a Raman band at 1030 cm⁻¹ associated with V=O stretching vibrations in monovanadate on all supports has been attributed to either dehydration of V(OH)₅ species (Figure 11, top) or to depolymerization of polyvanadate species (Figure 11, middle). The latter process requires the participation of hydroxyl groups from the support surface, and it has been suggested that the stronger the basicity of these groups, the greater the extent of polyvanadate dehydration. Consistent with this suggestion, we find that the extent of monovanadate formation at a nearly constant surface loading of vanadia decreases in the order HfO₂ > Al₂O₃ > ZrO₂ > TiO₂ > SiO₂. The observed decrease in polyvanadate Raman bands on SiO₂ and Al₂O₃ may be due to depolymerization of these species as proposed in Figure 11, middle panel. With the exception of VO₂/HfO₂, there is little evidence of any change in the structure of crystalline VO₂. In the case of VO₂/HfO₂, the Raman spectra shown in Figure 5e indicate an increase in the concentration of polyvanadate species relative to VO₂. In view of the strong similarity between ZrO₂ and HfO₂, the difference in hydration effects between VO₂/ZrO₂ and VO₂/HfO₂ is unexpected.

Raman spectra taken during the oxidation of dispersed vanadia clearly show that the vanadia overlayer can undergo significant structural changes depending on the oxidation temperature and the composition of the support. For vanadia dispersed on SiO₂ and Al₂O₃, the Raman features attributable to VO₂ crystallites disappear and new features appear as temperature increases from 723 to 923 K (Figures 6 and 7, top panels). While the highest calcination temperature (923 K) is below the melting point of bulk VO₂ (963 K), the temperature is above the Tamman temperature so that surface spreading of VO₂ is likely to occur. The exact structure or structures formed from the interactions of SiO₂ and Al₂O₃ with VO₂ are unclear, but it is reasonable to suggest that these may resemble individual sheets or partial sheets of VO₂. Significant differences in the effects of support composition are observed though, when spectra are taken upon cooling VO₂/SiO₂ or VO₂/Al₂O₃ from 923 to 298 K (see Figures 6 and 7, middle panels). In the case of SiO₂, the bands for VO₂ become more intense relative to that for monovanadate species. By contrast, the spectrum taken of VO₂/Al₂O₃ shows no evidence for VO₂ but only features that can be ascribed to mono- and polyvanadates. This suggests that on Al₂O₃, high-temperature calcination results in the wetting of the support surface by two-dimensional sheets or ribbons of vanadia derived from VO₂. Since vanadia does not wet SiO₂, high-temperature calcination results only in the agglomeration of VO₂ into larger particles.
On TiO$_2$, polyanvadate structures formed upon oxidation at 723 K remain stable up to 823 K, but at 923 K they appear to undergo some type of transformation since new Raman bands appear centered at 800 and 900 cm$^{-1}$. The intensity of the band at 900 cm$^{-1}$ decreases upon cooling from 923 to 298 K. The appearance of rutile TiO$_2$ bands confirms previous findings that surface vanadia migrates into titania and forms a rutile-vanadia compound.\textsuperscript{19,20} No evidence of V$_2$O$_5$ crystallites is observed.

Vanadia dispersed on ZrO$_2$ and HfO$_2$ occurs primarily in the form of polyanvadate species with evidence for only a small amount of Zr(V)$_2$O$_7$ or Hf(V)$_2$O$_7$ (see Figures 9 and 10, middle panels). Oxidation at progressively higher temperatures eliminates the polyanvadate band and strongly increases the intensity of the (Zr/Hf)V$_2$O$_7$ bands. Upon cooling the sample following oxidation at 723 K, a very small amount of V$_2$O$_5$ is observed, but there is no change in the Raman spectrum observed upon cooling after treatment at 923 K.

Significant changes in the Raman spectrum of dispersed vanadia after reduction at 723 K in H$_2$ are evident only for VO$_x$/Al$_2$O$_3$. As seen in the bottom panel of Figure 7, H$_2$ reduction at 723 K has much the same effect as calcination at 823 K and higher. All traces of V$_2$O$_5$ disappear, and the only observable species are polyanvadates and monovanadates. It would, therefore, appear that the creation of anionic vacancies in V$_2$O$_5$ somehow facilitates the wetting of Al$_2$O$_3$. Reoxidation at 723 K restores some of the V$_2$O$_5$, but a noticeable amount of polyanvadate species remain. While the process by which H$_2$ reduction facilitates the spreading of V$_2$O$_5$ on Al$_2$O$_3$ is not understood, the surface rearrangement caused by reduction has significant catalytic implications. For the oxidative dehydrogenation of propane, VO$_x$/Al$_2$O$_3$ was found to be more selective and active than VO$_x$/SiO$_2$.\textsuperscript{2} The spectra labeled a in the middle panels of Figures 6 and 7 indicate that freshly oxidized VO$_x$ is found on both supports primarily as monovanadate and V$_2$O$_5$ species. Once reduced, however, the surface structures become significantly different as seen in the spectra labeled b in the bottom panels of Figures 6 and 7. The activation of C–H bonds in oxidative dehydrogenation reactions might induce a similar surface rearrangement and explain the high selectivity observed for VO$_x$/Al$_2$O$_3$ catalysts.\textsuperscript{5} This interpretation of the similarity between reduction and oxidative dehydrogenation mechanisms would also explain the low activity and selectivity observed for catalysts with low VO$_x$ coverage.\textsuperscript{2} At low VO$_x$ surface density, monovanadates are the most abundant surface species. The inability to reduce these species, as observed by Raman, might explain the low activity of monovanadates.

For ZrO$_2$ and HfO$_2$ supports, the only change in the Raman spectrum detected upon reduction in H$_2$ at 723 K is a loss of all V$_2$O$_5$ bands. These bands reappear, however, upon reoxidation of the samples at 723 K. It could be assumed that reduction of surface V$_2$O$_5$ produces polyanvadate species as it does on Al$_2$O$_3$, but no increase in polyanvadate bands is detected in the Raman spectra of reduced samples. A different explanation would be that V$_2$O$_5$ reduction forms color centers which give rise to strong absorption of the incident and scattered light in the reduced samples. Reoxidation would reverse this change and thereby restore V$_2$O$_5$ peaks.

The absence of any change in the structure of vanadia dispersed on ZrO$_2$ upon reduction presented here confirms recent reports by Su and Bell.\textsuperscript{14} It was shown that, at reduction temperatures up to 773 K, no change could be seen in the structure of the dispersed vanadia, consistent with the observation of very little oxygen removal from the oxide by either H$_2$ or C$_3$H$_8$. VO$_x$/HfO$_2$ catalysts behave in all respects to VO$_x$/ZrO$_2$.

**Conclusions**

Support composition and VO$_x$ surface density influence the structure and behavior of supported VO$_x$ catalysts. Following dehydration, all supports indicate the presence of monovanadate species at low weight loadings. These monovanadates tend to develop into larger-domain vanadia species as VO$_x$ surface density increases. At high VO$_x$ loading, vanadia exists predominantly as polyanvadate species on TiO$_2$, ZrO$_2$, and HfO$_2$, but as V$_2$O$_5$ on SiO$_2$ and Al$_2$O$_3$.

UV–visible and near-edge spectra indicate that supported VO$_x$ species exist in larger domains and have higher-coordinate centers when hydrated. Dehydration consistently leads to a breakup of these domains. Raman spectra suggest that V=O bonds in mono- and polyanvadate species are most susceptible to hydration. On all supports, dehydration leads to the development of monovanadate species. Polyanvadate on TiO$_2$, ZrO$_2$, and HfO$_2$ also undergo structural changes when hydrated. Interpretation of this is more difficult because of the broad Raman bands which allow only qualitative assignments. Support material plays an important role in determining the extent of hydration, but this role might arise from the ability to support polymeric vanadia species.

Higher calcination temperatures produce significant changes in VO$_x$ structure. On SiO$_2$, V$_2$O$_5$ sheets agglomerate, while on Al$_2$O$_3$, these same sheets transform into polyanvadate species. On ZrO$_2$ and HfO$_2$, a metal vanadate compound is formed. Zr(V)$_2$O$_7$ is formed at a lower temperature than Hf(V)$_2$O$_7$, but the formation of both is accompanied by a decrease in surface area and a conversion of support phase, suggesting that both phases are formed as the support begins to transform into a monoclinic phase. Polyanvadate species form a mixed-metal species with rutile TiO$_2$.

H$_2$ reduction produces the most significant changes in VO$_x$/Al$_2$O$_3$, where surface V$_2$O$_5$ transitions into polyanvadate environments. On ZrO$_2$ and HfO$_2$, surface V$_2$O$_5$ is also reduced, but it is not clear what type of VO$_x$ species results. Reduction of VO$_x$/TiO$_2$ leads to disappearance of monovanadate species. Reoxidation restores the original VO$_x$ structures on SiO$_2$, ZrO$_2$, and HfO$_2$. On Al$_2$O$_3$, reoxidation does not progress to completion, perhaps because of kinetic limitations. Monovanadate species do not reappear on TiO$_2$ after reoxidation.

**Acknowledgment.** The authors wish to acknowledge T. D. Tilley for the provision of OV[O(Si(OBu))$_3$]$_3$ and G. D. Meitner for assistance in the interpreting X-ray near edge absorption data. This work was supported by the Director, Office of Basic Energy Sciences, Chemical Sciences Division, of the U.S. Department of Energy, under Contract DE-AC03-76SF00098. The authors acknowledge Stanford Synchrotron Radiation Laboratory and the U.S. Department of Energy for use of the beamline.

**References and Notes**
