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(7) ABSTRACT
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approach to the rational development of scalable heteroge-
neous catalysts and of high-performance solid materials.
The CDE includes three main components: the testing cycle,
the knowledge cycle, and the knowledge repository or
database. The knowledge cycle generates working hypoth-
eses relating performance to key catalyst properties via
machine learning methods, computation chemistry and
micro-kinetic modeling. Such an approach accelerates
development and scale-up of new materials without the
impediments introduced by conventional combinatorial
approaches based on randomly selected materials.
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METHOD AND SYSTEM FOR THE
DEVELOPMENT OF MATERIALS

PRIORITY

This application claims priority to, and is a continuation-
in-part of, the U.S. patent application entitled A Knowledge-
Based Process for the Development of Materials, filed Aug.
6, 2001, having a Ser. No. 09/921,929, the complete disclo-
sure and drawings of which are hereby incorporated by
reference.

FIELD OF THE INVENTION

The present invention relates generally to materials devel-
opment methods, and, more particularly to a process for the
rational development of materials used in chemical
processes, including but not limited to heterogeneous cata-
lysts. When applied to heterogeneous catalysts, this process
may be referred to as a catalyst development engine (CDE).

BACKGROUND OF THE INVENTION

The still emerging, recent application of combinatorial
chemistry to high-speed high throughput synthesis and
screening of materials does not adequately address the
commercial requirements that a catalyst must meet. Current
combinatorial methods are based on random screening of
large libraries of materials, prepared and evaluated under
unrealistic conditions that are difficult to scale up. Thus,
little useful knowledge is derived from such experiments to
guide the selection of the next set of experiments or mate-
rials and to scale up the material. A different approach for
catalytic material discovery and development is needed in
order to reduce the time to market which includes scalable
high-throughput methods for catalyst synthesis and real-
world conditions catalyst evaluation to accelerate generation
of useful data coupled with a process that maximizes learn-
ing from these data and rapidly and efficiently identifies new
material candidates. This knowledge driven process uses
integrated scientific and empirical modeling tools to comple-
ment and mine experimental data in order to build predictive
models that the scientist can use to guide material selection.
This knowledge process for rational (as opposed to random)
material discovery and development is the subject of this
invention.

SUMMARY OF THE INVENTION

The present invention comprises a research process, pref-
erably computer-assisted, for use by the scientist to guide the
selection of new materials and accelerate the rational devel-
opment of materials. This system comprises a Knowledge
Cycle™ (KC), a Testing Cycle™ (TC) and a knowledge
management system. The KC comprises data-based and
science-based modeling tools that are integrated in a knowl-
edge management system, in order to maximize learning and
enhance the scientist’s decision-making capabilities for effi-
cient experiment planning.

Additional advantages of the invention will be set forth in
part in the description which follows, and in part will be
learned from the description, or may be learned by practice
of the invention. The advantages of the invention will be
realized and attained by means of the elements and combi-
nations particularly pointed out in the appended claims.

The above and other features and advantages are achieved
through the use of a novel material development process as
herein disclosed. In accordance with one embodiment of the
present invention, a method of identifying chemical reaction
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2

mechanisms for a chemical process includes the step of
specifying a reactant set that includes a plurality of chemical
substances that may engage in a chemical reaction with one
or more other substances in the reactant set. It also includes
the step of specifying a plurality of possible products that
may result from the reaction of two or more of the sub-
stances included in the reactant set. It also includes the step
of identifying a reaction mechanism set that includes a
plurality of reaction mechanisms, wherein each reaction
mechanism is a combination of two or more elementary
steps representing the chemical process. It also includes the
step of selecting a plurality of catalytic materials, where
each catalytic material is associated with at least one of the
reaction mechanisms in the reaction mechanism set, and
each catalytic material is also associated with experimental
data. It also includes the steps of associating a kinetic
constant value with each elementary step of each reaction
mechanism, as well as generating a kinetic model associated
with each reaction mechanism and each catalytic material.
Further, it includes the step of using a processing device to
screen the reaction mechanism set by applying a goodness of
fit test to the experimental data associated with each catalyst,
eliminating the reaction mechanisms having a worst fit, and
grouping the remaining reaction mechanisms associated
with each catalytic material to provide a first reaction
mechanism subset for each catalytic material.

Optionally, the method also includes the steps of selecting
a performance variable and, for the reaction mechanisms
contained in the first reaction mechanism subset, identifying
one or more associated kinetic parameters to which the
performance variable is most sensitive.

The method of may also include the steps of using a
processing device to calculate a modeled kinetic constant for
a plurality of the elementary steps associated with a plurality
of the reaction mechanisms using the processing device to
screen the first reaction mechanism subset by eliminating the
reaction mechanisms having associated kinetic constants
that least closely relate to their corresponding modeled
kinetic constants, and associating the remaining reaction
mechanisms not eliminated in the second screening step
with a second reaction mechanism subset. In this option, the
calculating step may comprise using molecular modeling to
calculate the modeled kinetic constant. Also, the option may
include the additional steps of selecting a performance
variable, and, for the reaction mechanisms contained in the
second reaction mechanism subset, identifying one or more
associated kinetic parameters to which the performance
variable is most sensitive.

In accordance with an alternate embodiment of the
invention, a method of identifying materials for the perfor-
mance of a chemical process includes the step of selecting
a data set for a set of materials. The data set includes one or
more dependent performance variables for a chemical
process, as well as independent variables including, but not
limited to, calculated or measured properties of the materials
or preparation parameters relating to the materials. The
method also includes the step of building a model that
correlates the dependent performance variables with one or
more of the independent variables, as well as the step of
identifying one or more of the independent variables having
values that yield improved values of the dependent perfor-
mance variables based on the results of the model built in the
building step. Further, the method includes the step of
identifying one or more new materials that are associated
with the values of the one or more independent variables that
yield improved values of the dependent variables.

Optionally, in this embodiment, the step of building a
model comprises the use of recursive partitioning. Also
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optionally, one or more dependent performance variables or
one or more independent variables may comprise kinetic
parameters that have been associated with reaction mecha-
nisms in a reaction mechanism set. Also optionally, the
method may include the steps of applying a Monte Carlo
kinetic simulation to calculate at least one modeled perfor-
mance parameter for each material included in the material
set, and selecting at least one materials class based on the
results of the Monte Carlo simulation.

Further, the method may include the steps of (i) selecting
a selected reaction mechanism from a reaction mechanism
set, wherein each reaction mechanism in the set comprises
a combination of two or more elementary steps in a chemical
process; (ii) applying a Monte Carlo kinetic simulation to
calculate at least one modeled performance parameter for
each material identified in the identifying step, wherein the
simulation is associated with the selected reaction mecha-
nism; and (iii) selecting at least one materials class based on
the results of the Monte Carlo simulation. With this option,
each reaction mechanism in the reaction mechanism set may
have been screened, using a goodness of fit test, to eliminate
reaction mechanisms for which experimental data associated
with reaction mechanism catalysts has been determined to
have a poor fit. Each reaction mechanism in the reaction
mechanism set may have been further screened to eliminate
reaction mechanisms having associated Kinetic catalysts that
least closely relate to corresponding modeled kinetic con-
stants.

In accordance with an alternate embodiment, a process for
the development of scalable, high-performance materials
includes a computer-assisted knowledge cycle that uses at
least one of (i) input from existing experimental data; (ii)
correlations generated from at least one of experimental,
theoretical, and/or modeling findings; and (iii) theoretical
and modeling investigations to generate working hypotheses
and suggested steps for at least one of experimental inves-
tigations and theoretical investigations to guide the search
for better materials.

Optionally, the knowledge cycle further may also include
the use of kinetic modeling to guide catalyst development.
The knowledge cycle may also include the use of machine
learning methods to guide catalyst development, as well as
using kinetic Monte-Carlo simulation to screen catalytic
surfaces for catalytic performance.

There have thus been outlined the more important features
of the invention in order that the detailed description that
follows may be better understood, and in order that the
present contribution to the art may be better appreciated.
There are, of course, additional features of the invention that
will be described below and which will form the subject
matter of the claims appended hereto.

In this respect, before explaining at least one embodiment
of the invention in detail, it is to be understood that the
invention is not limited in its application to the details of
construction and to the arrangements of the components set
forth in the description or illustrated in the drawings. The
invention is capable of other embodiments and of being
practiced and carried out in various ways. Also, it is to be
understood that the phraseology and terminology employed
herein, as well as the abstract, are for the purpose of
description and should not be regarded as limiting.

As such, those skilled in the art will appreciate that the
conception upon which this disclosure is based may readily
be used as a basis for designing other structures, methods,
and systems for carrying out the several purposes of the
present invention. It is important, therefore, that the claims
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be regarded as including such equivalent constructions inso-
far as they do not depart from the spirit and scope of the
present invention.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in
and constitute a part of this specification, illustrate one
embodiment of the invention and together with the
description, serve to explain the principles of the invention.
In the drawings:

FIG. 1 is a schematic diagram showing a preferred
embodiment of the catalyst development engine.

FIG. 2 is a schematic diagram showing the underlying
architecture of the catalyst development engine.

FIGS. 3a and 3b illustrate exemplary and optional steps
included in preferred embodiments of a knowledge cycle.

FIGS. 44 through 4c illustrate exemplary results of micro-
kinetic analysis for NO decomposition on Pt/Al,O5catalysts
using the present invention.

FIG. 5 is a plot of the apparent rate constant for NO
decomposition versus oxygen affinity for various catalysts at
two temperatures, in accordance with the example started in
FIGS. 4a through 4c.

FIG. 6 illustrates exemplary data for the identification of
key catalyst properties.

FIG. 7 is a plot of the apparent rate constant for NO
decomposition versus the standard enthalpy of formation of
oxides, in accordance with the example started in FIGS. 4a
through 4c.

FIG. 8 is a list of elementary steps for NO decomposition
and oxidation, in accordance with the example started in
FIGS. 4a through 4c.

FIG. 9 is an energy diagram for the elementary steps listed
in FIG. 8.

FIG. 10 is a plot of the calculated binding energy of
adsorbed oxygen on Pt(100) as a function of coverage, in
accordance with the example started in FIGS. 4a through 4c.

FIG. 11 is a plot of the calculated turnover frequencies of
N, and NO, formation on Pt(100), in accordance with the
example started in FIGS. 4a through 4c.

FIG. 12 is a plot of the calculated turnover frequencies of
N, and NO, formation on Rh(100), in accordance with the
example started in FIGS. 4a through 4c.

FIG. 13 shows Density Function Theory (DFT) calculated
heats of adsorption for 0*, N*, and NO* and the NO
activation barrier over several different transition metal
surfaces, in accordance with the example started in FIGS. 4a
through 4c.

FIG. 14 represents the variations of the calculated NO
activation energy as a function of the structure of ideal Pt
single crystal surfaces, in accordance with the example
started in FIGS. 4a through 4c.

FIG. 15 shows the DFT calculated transition state for the
activation of NO over Pt(100), in accordance with the
example started in FIGS. 4a through 4c.

FIG. 16 illustrates an exemplary computer suitable for
carrying out the automated functions of the present inven-
tion.

FIG. 17 illustrates the internal hardware of the exemplary
computer of FIG. 16.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

The present invention is a method of discovering,
developing, and optimizing materials. The method may be
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applied to the development of new heterogeneous catalytic
systems. Reference will now be made in detail to the present
preferred embodiments of the invention, examples of which
are illustrated in the accompanying drawings.

This section provides an overview of the catalyst devel-
opment engine (CDE) of the present invention and discusses
the tools and methods required for data analysis and mining,
predictive model development and catalytic materials selec-
tion. The topics discussed under this heading are the key
components of the novel CDE depicted in FIG. 1. The
engine provides a rapid approach to the rational develop-
ment of scalable heterogeneous catalysts and high-
performance solid materials. The CDE includes three main
components that are intimately connected in an integration
framework: (1) a testing cycle (TC) 20 for experimental data
generation; (2) a knowledge cycle (KC) 22 for data analysis
and subsequent experiment planning; and (3) a knowledge
repository 24 (e.g., a database).

The primary function of the TC 20 is to rapidly generate
informative data for the experimental evaluation of new
catalytic materials and also generate data on well-
characterized systems and for probe reactions of materials
properties such as, but not restricted to, acidity, basicity,
reducibility, etc. for use in the KC 22. The primary functions
of the KC 22 are (1) to generate working hypotheses relating
performance to key catalyst properties that will guide the
search for even better catalysts and (2) to generate funda-
mental structure-property relationships that will be instru-
mental in the selection of catalysts for further experimental
evaluation in the TC 20. Both cycles run concurrently and
feature theoretical and experimental activities that are highly
integrated. The knowledge repository expands after each
iteration of the CDE. The knowledge repository inventories
materials properties and catalyst performance data for a
comprehensive database of materials and for characteristic
probe reactions of materials properties. It contains both
experimental and theoretical data. Such an approach accel-
erates development and scale-up of new materials without
the impediments introduced by conventional combinatorial
approaches based on randomly selected materials. Preferred
components and activities of the CDE are described in more
detail in the following table (Table 1), and illustrated in FIG.
2.

TABLE 1

Catalyst Development Engine—Research Process Description

Statement of Problem:
Entails a concise statement clearly defining project goal(s) in terms
that can be reasonably and adequately addressed with the tools available.

Prior Data All pertinent available data, independent of source, are
collected, evaluated and stored in the knowledge
repository in a format that is usable in the CDE.

Testing Cycle:

In this cycle, the emphasis is on a rapid selection,

preparation, and evaluation of potential catalysts.

Catalyst & Test  The catalyst target is selected for evaluation, which

Selection includes determining what performance tests are
meaningful, e.g. rate, selectivities, conversions, heats
of adsorption, etc.

Experimental The selected catalysts are prepared and evaluated

Design according to an experimental design matrix. This

ensures that the significant variables are effectively
examined with the minimum number of experiments,
while maximizing the information gathered.
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TABLE 1-continued

Catalyst Development Engine—Research Process Description

Synthesis, and
Evaluation

The catalysts are prepared using validated
methodologies and HTP tools. They are synthesized
and evaluated for key properties and performance as
prescribed by the experimental design.

Knowledge Cycle:

This cycle uses literature, Testing Cycle data, theoretical
chemistry and simulation data to (1) Discriminate between
reaction mechanisms; (2) Identify key measurable catalyst

properties via molecular or empirical modeling; and (3)
Derive structure-property models to guide catalyst search.

Screen Reaction
Mechanisms

Microkinetic modeling is applied to identify critical
mechanistic steps that limit performance and
associated kinetic parameters. Its functions include:
Generate mechanisms based on reactant, product, and
possible intermediates

Discriminate between reaction mechanisms based on
goodness of fit with experimental data and with
realistic constraints on kinetic parameters based on
measurements or molecular modeling calculations.
Perform sensitivity analysis on kinetic parameters to
identify important ones.

Mechanisms that can reproduce general trends in
existing data are studied in more detail with molecular
modeling to further evaluate their validity.
Experimental theoretical and simulation data are
modeled with empirical machine learning algorithms to
generate hypotheses relating catalyst descriptors
including properties (e.g. binding energies, activation
energies, other surface properties) and synthetic
parameters to key kinetic parameters or to performance
Electronic structure, composition/structure, particle
size, support, and promoters can affect the surface
properties of catalysts. Developing trends that relate
catalyst descriptors to these properties will assist the
scientist in deciding what “knob” to turn in order to
tune the catalyst properties.

Screen virtual surfaces for performance using Monte-
Carlo simulation using semi-empirical and ab initio
computational methods for kinetic parameter
estimation. Develop guiding trends across materials
classes.

Develop optimal lead catalytic systems using
predictive machine learning methods such as recursive
partitioning, neural networks or genetic algorithm to
estimate performance of new materials from catalyst
descriptors

Identify Key
Catalyst
Properties

Guide Selection
of Material
Candidates for
Subsequent
Experiments

Iterations:

Using the knowledge gained from the current cycle a determination is
made on how to proceed; either by preparing another round of targets or
by terminating this phase of the project because the catalyst meets the
project goals or it is a dead end and the project continuation is evaluated.
Solution to Problem:

When a new catalyst that meets the performance criteria is identified,
it is considered for scale-up and commercial development

The process outlined in Table 1 is a novel decision-
support tool for the researcher to use interactively in the
development of new catalytic materials. The CDE integrates
various modeling tools—computational chemistry tools,
kinetic modeling, and machine learning—with a knowledge
management system to house the significant experimental
and theoretical knowledge for its efficient future use in the
guided development of new catalytic materials.

FIGS. 3a and 3b provide additional detail about the
knowledge cycle element of the present invention. Referring
to FIG. 3a, the performance target or targets and desired
reaction(s) are identified (step 70). Theoretical and experi-
mental data are also gathered (step 72), from existing
sources, from new research, and/or from the knowledge
cycle process itself. The knowledge cycle can use either a
microkinetic modeling approach (step 74) or a machine
learning approach (step 80). Optionally, a combination of
the two approaches may be used.
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With the microkinetic modeling option (step 74), the
cycle includes the specification of reactants, products, and
intermediates (step 75), the generation of reaction mecha-
nisms (step 76), the screening of mechanisms (step 77), and
the identification of critical kinetic parameters (step 78). The
screening step (step 77) is further illustrated in FIG. 3b.
Referring to FIG. 3b, based on a microkinetic model 90 and
experimental data 92, a goodness of fit test is performed
(step 92) between the experimental data and the data gen-
erated by the model to eliminate the reaction mechanisms
for which the fit is not good. A second cut is taken by using
kinetic parameters calculated with molecular modeling (step
97), and assessing the reasonableness of kinetic parameters
associated with the mechanisms (step 96). The relative
sensitivity of the catalyst performance to the various kinetic
parameters is also assessed (step 98), with a preference
expressed for the parameters having the highest levels of
sensitivity.

Returning to FIG. 3a, in addition to the microkinetic
modeling, databases of information gathered can be mined
using one or more of many types of machine learning and
pattern recognition techniques to identify correlations
between performance, properties, and preparation variables
(step 80). These correlations become the basis for the
selection of materials. These potential materials can be
screened further using Monte Carlo kinetic simulation (step
88). In this step, catalytic performance of a virtual catalyst
candidate can be calculated. Using one or a combination of
these options, materials are selected for synthesis and testing
(step 82), experiments are designed (step 84), and perfor-
mance and properties are measured in a testing cycle (step
86).

The following sections describe, in additional detail, the
modeling tools that are suitable for treating heterogeneous
catalyst problems: the computational chemistry methods, the
microkinetic and Monte-Carlo modeling techniques for per-
formance prediction, and the machine learning algorithms
that together make the CDE™ approach novel and viable.

Computational (Modeling) Methods

Current state-of-the-art molecular modeling of catalysts
involves either ab initio quantum chemical methods or
semi-empirical methods. Ab initio quantum chemical meth-
ods are first-principle solutions to the Schrodinger equation,
which make only a few very basic approximations. Because
of the high level of detail and accuracy, they are applicable
to essentially any material system but they require high
computational intensity. They provide the best accuracy for
a wide range of chemical and catalytic properties. These
methods are used to examine the chemisorption and reac-
tivity of all reactants, intermediates, and products at different
surface coverages in order confirm the reaction mechanism
and provide the parameters necessary for detailed microki-
netic models (adsorption energies, activation energies, rate
constants). In addition, a large set of chemical and catalytic
properties for different catalytic systems are evaluated in
order to develop a set of property libraries that are used to
establish correlations (metal-adsorbate bond strengths, site
acidity, site basicity, oxidation potential, etc.) and hypoth-
escs tests.

Semi-empirical methods include both empirical theoreti-
cal models, such as Bond Order Conservation, and semi-
empirical quantum chemical methods. Semi-empirical quan-
tum chemical methods attempt to minimize the
computational efforts required to solve the Schrodinger
equation by approximating multi-center integrals that slow
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down computation. These approaches range from very
approximate calculations such as extended Huckel
calculations, which simply ignore the contributions from
multi-center integrals, to very approximate methods using
low computational times on the order of a few minutes.
More sophisticated methods treat the multi-center interac-
tion integrals using empirical information. They typically
use experimental data or ab initio results in order to param-
eterize the integrals.

In terms of ab initio methods, Density Functional Theory
(DFT) calculations provide the state-of-the-art for modeling
catalytic systems and they can be used to predict chemi-
sorption energies, overall reaction energies, activation
barriers, and chemical properties descriptors which target
key catalytic properties, such as acidity, basicity, and reduc-
ibility. Gradient-corrected DFT methods have proven to be
the most robust and accurate methods for the prediction of
large transition-metal systems due to their ability to explic-
itly treat electron-electron correlation. The active surface
sites can be approximated by using either a metal cluster
model to represent the coordination and bonding of the
active metal particles, or a periodic slab model that repre-
sents larger exposed surfaces. The accuracy of DFT methods
in predicting energetics for transition metal systems is +/-5
kcal/mol. Although quantitative accuracy is important, the
ability to predict the relative trends across the periodic table
is more critical for the identification of useful catalyst
targets. This enables scanning of a range of unknown
systems for optimal metal-adsorbate bond strengths and
surface reactivity.

These detailed calculations can be used to understand and
predict the trends in both chemisorption and surface reac-
tivity across the periodic table. Non-local cluster and peri-
odic slab DFT calculations have been used to compute the
binding energies of maleic anhydride on the 111 surfaces of
Pd, Re, Au, Pd/Re, Pt, Pd/Mo, and Pd/Au. Basic concepts
from frontier molecular orbital theory are subsequently used
to construct a general model that is able to predict a priori
the outcome of the more detailed ab initio calculations.
These models provide an understanding of the controlling
factors that govern chemisorption as well as a knowledge-
driven approach to the screening of multi-metallic and metal
oxide systems by simply computing a particular chemical
descriptor (in this case the center of the d-band at the surface
layer of the metal). This model is further extended to predict
activation barriers for different elementary steps in the
overall catalytic path. As such, studies show that the reac-
tivity of the surface scaled with the relative location of the
d-band center of the metal with respect to the Fermi level.
Also, the reaction kinetics over different (111) surfaces is
found to correlate quite well with changes in the center of
the d-band. There is an optimal trade-off between different
reactions. As the metal-adsorbate bond becomes too weak it
becomes difficult to dissociate hydrogen on the surface. This
shuts down the overall reaction.

While DFT quantum mechanical method are appropriate
for establishing the reaction mechanism, and for accurately
calculating properties for a large number of systems, the
calculations can still require 1-2 days per simulation. In
order to offer daily guidance and be able to lead high-
throughput screening efforts, a much faster method needs to
be developed. The present invention uses a variety of
semi-empirical methods that run for a few minutes to
determine specific catalytic properties within reasonable
accuracy. These methods, driven by the scientist, can be
coupled with advanced machine learning methods, that are
described later, in order to develop a potential set of lead
catalytic systems which meet the target properties.
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Another semi-empirical method is the Atomic Superpo-
sition Electron Delocalization Molecular Orbital Theory
(ASED-MO). ASED may be used to describe many quali-
tative features and, in some cases, it can provide quantitative
assessments in catalysis. The applicability and accuracy of
the approach depends on developing appropriate parameters.

The present invention generates very detailed ab initio
libraries as well as empirical databanks, which can be used
to parameterize these systems more accurately. By way of
simple comparison, we examined how well we can infer
trends in binding energies by comparing simple ASED
calculation which were optimized to detailed DFT calcula-
tions. We found that the results show the correct trends to
within 30% for NO, O, and N binding energies over a set of
different metals. The application of structural optimization
as well as refined regression of the parameters should
improve the accuracy to 10-20%.

In addition to refined ASED models, we have developed
a more approximate Bond-Order Conservation (BOC)
method. While BOC has some ties back to quantum chemi-
cal descriptions of bonding, it is a very simple approach that
does not attempt to solve the Schrodinger equation. The
approach offers some predictions of reactivity. The present
inventors have found that some of the known shortcomings
of this method can be overcome by determining interaction
parameters from first-principle DFT methods. Also, tight
binding or single-SCF DFT methods are used and evaluated
for the most appropriate compromise between accuracy and
speed.

Microkinetic Analysis

Microkinetic modeling incorporates the basic surface
chemistry, i.e., elementary steps, in the kinetic description of
a catalytic reaction. Such a kinetic model is a very useful
tool to compare and extrapolate the performance of different
catalytic materials at various process conditions. It is used to
eliminate postulated reaction mechanisms that are not con-
sistent with experimental data. Given a plausible
mechanism, microkinetic analysis can also identify to the
small number of critical kinetic parameters that are required
in order to describe the overall rate of the catalytic process.
This is accomplished by performing a sensitivity analysis of
catalytic performance with respect to all kinetic parameters.
Knowledge of the critical kinetic parameters and associated
steps can provide the scientist with insights on how to
modify materials in order to increase the overall perfor-
mance.

In the Catalyst Development Cycle, the microkinetic
analysis may include one or more of the following steps:

(1) Mechanism enumeration: Given a catalytic reaction,

various possible mechanisms are enumerated based on
the list of observed products and possible
intermediates, list of plausible elementary steps,
experimental kinetic data on a training set of materials,
literature data, and chemistry rules. For example, steps
that require the simultaneous reaction of more than
three reacting species or the breaking and forming of
too many chemical bonds are usually not elementary
and can be excluded. Reaction pathways can also be
computer-generated by assuming again that an elemen-
tary step involves only a small number of changes in
the bonding of the reactants, i.e., three or four changes
in the connectivity of the reactants via bond cleavage
and formation.

(2) Mechanism discrimination: There is usually a deficit

of information for the values of kinetic rate constants of
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elementary steps, especially for the activation barriers.
Good estimates of pre-exponential factors can be
obtained from collision rate theory and transition-state
theory. Molecular modeling can also be used to con-
strain the possible value of activation barriers. The
remaining unknown kinetic parameters become adjust-
able parameters that are determined by fitting the
kinetic model to experimental data. Experimental
design is used to determine the optimal process variable
space for kinetic parameter estimation. Discrimination
between two mechanisms is accomplished based on
how well each mechanism reproduces the experimental
kinetic features as process variables are varied. Addi-
tional experimental data may be required for discrimi-
nation as the optimal process variable space for mecha-
nism discrimination may differ from the one used for
kinetic parameter estimation.

(3) Kinetic parameter discrimination: Mechanisms which
can no longer be distinguished based on experimental
data (because the process variable space for discrimi-
nation is not accessible experimentally) can be exam-
ined for the reasonableness of their values of the kinetic
parameters

(4) Sensitivity analysis: A sensitivity analysis of the
overall catalytic performance with respect to the kinetic
parameters of the elementary steps is carried out on the
remaining few reaction mechanisms which have passed
steps/filters (2) and (3). The most sensitive parameters
are the critical parameters to be altered

(5) Relate critical kinetic parameter to material properties:
This step is probably the most challenging as Kkinetic
parameters may depend on complex combinations of
measurable materials properties. Postulated materials
properties may be tested for relevance by synthesizing
and testing materials with varying values of that prop-
erty or by calculating with molecular modeling the
critical kinetic parameter and the specific property for
a series of model catalytic surfaces. The outcome of
that step is one or several structure-property relation-
ships that relate kinetic or thermodynamic parameters
to a measurable materials property.

(6) Parameter optimization: Optimum values of the
kinetic parameters are calculated from the microkinetic
model(s) given the targeted value for the overall cata-
Iytic performance. These values are compared to the
structure-property relationship in order to assess
whether or not a candidate material with the required
properties is plausible or not. This information is used
to select materials to be investigated in the next itera-
tion of the TC.

The reaction pathway for a catalytic process depends on
the properties of the materials, hence experimental kinetic
data on new materials from the TC must be re-processed
through steps (2) through (6) to investigate possible changes
in reaction pathways and to update the kinetic hypothesis
and the associated structure-property relationships.

Monte-Carlo Simulation

As in microkinetic analysis, kinetic Monte-Carlo simula-
tion can be used to simulate the rate of elementary surface
processes. However, Monte-Carlo simulation takes into
account the explicit effects of surface coverage, local surface
atomic composition, structure, and spatial arrangement. The
effects of surface poisons and promoters on catalytic per-
formance can also be simulated. This technique can, for
example, simulate the essential features of the kinetics of the
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catalytic hydrogenation of ethylene on Pd(100). Other simu-
lations are, of course, possible. The Monte Carlo method
successfully describes the relative kinetic trends as process
variables are altered and, in some cases where the metal
surface structure is well defined, it has captured some degree
of quantitative accuracy. This approach is unique in relating
overall catalytic performance to surface materials properties.
While the Monte-Carlo kinetic simulation has been used to
elucidate the effects of local structure on the catalytic
process, its application to systematic virtual screening of
catalytic surfaces is novel in the CDE. In this invention, it is
used to predict the relative performance (activity, selectivity,
life—under steady-state and/or transient conditions) of vir-
tual catalytic surfaces as a function of process variables and
materials surface properties and to provide relative ranking
of these surfaces. Surfaces that show promising catalytic
properties can then be explored further experimentally. This
tool is aimed at guiding the scientist in the exploration and
optimization of catalytic materials.

As in the micro-kinetic analysis the catalytic process must
be broken down in a series of elementary steps or lumped
elementary steps. The Monte-Carlo algorithm tracks the
spatial and temporal changes of all surface intermediates in
order to simulate the kinetics. Values for activation barriers
and pre-exponential factors for these steps are necessary
input to the model. Pre-exponential factors can be taken
from the experimental literature if available or calculated
from transition-state theory and collision rate theories. Acti-
vation barriers can be obtained from experiment, ab initio
calculations or semi-empirical methods such as BOC theory.
The latter methods, while less accurate than first-principle
quantum chemistry calculations, are considerably faster and
thus can be used for fast screening of catalytic surfaces and
their relative ranking. The bond energies of the atomic
species used in BOC theory are calculated from ab initio
computational chemistry. Effects of lateral interactions
between different species as a function of their distance
within the catalytic surface grid are separated into through-
surface interactions, where the presence of a neighboring
adsorbs species affects the local surface electronic
properties, and through-space adsorbate-adsorbate interac-
tions. The former can be quantified using BOC theory and
the latter using a molecular mechanics model such as a
Force-Field model for example.

The Monte-Carlo algorithm examines all reaction sce-
narios on a combination of different grid sites (atop, bridge,
hollow) and different grid ensembles and then assesses their
probability of occurrence and rate based on site proximity
and occupancy for the reactant and product states of the
reaction. When a reaction scenario is possible, binding
energies of reactants, products, and intermediates are cal-
culated at the appropriate surface sites. All possible surface
scenarios are computed and stored. The overall rate of each
elementary step is then calculated based on the number of
possible scenarios. Each step is classified as being either in
equilibrium or dynamic based on their rate. In the randomly
generated time-event, the dynamic reaction that occurs is
chosen based on its relative rate as compared to the sum of
the rates of all dynamic processes. All equilibrium
processes, including surface diffusion, are allowed to occur
after every time.

Validation of the simulated results against experiment for
a training set of materials is critical because of the assump-
tions present in the kinetic parameter estimations.

Machine Learning Techniques

Machine learning is the process of building from a set of
data a data structure, i.e. model, from which new insights,
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knowledge and learning can be derived. Two possible appli-
cations of machine learning in the KC of the CDE are (1) the
identification and ranking of critical descriptors or combi-
nation of descriptors, including chemical properties such as
acidity, basicity, and reducibility and also process variables
important to the preparation and treatment of materials; and
(2) the selection of materials candidates or experimental
compositional as well as process parameter regions to be
explored experimentally based on the prediction of the
learning model. While machine learning techniques have
been applied earlier for the development of heterogeneous
catalytic materials, their success has been very limited due
in part to the small amount of reliable data available and the
choice of machine learning methods. The recent develop-
ment of high-throughput techniques and equipment for the
synthesis and assay of catalytic materials is enabling the
collection of much larger data sets in a much shorter time
and thus is making the application of these data-driven
techniques more important and productive in the develop-
ment of new catalytic materials.

There are a number of machine learning techniques
available, which can be categorized into two classes: super-
vised and unsupervised learning. The selection of a particu-
lar technique depends on the question that the scientist is
asking. Supervised learning allows for prediction based on
the data model that is generated from the training set.
Unsupervised learning methods generate the data model
itself from the training data. The KC contains a toolbox of
machine learning algorithms that can be selected based on
the inquiry of the scientist. A representative list of methods
is shown in Table 2. Other methods could be used as well.

TABLE 2

Selected Machine Learning Techniques

Neural Networks Decision Trees, especially ensembles of
such trees

Genetic Algorithms/Genetic Programming
Tangled Hierarchies of Sets

Clustering

Fuzzy Methods

Naive Bayes

Support Vector Machines

Gaussian Processes

Bayesian Net
Simulated Annealing
Recursive Partitioning
Hidden Markov Models
Semantic Networks
Similarity Mapping
Self-organizing Maps

Knowledge Management System

A schematic diagram of a preferred embodiment of the
CDE is shown in FIG. 2. The CDE is based on valuable
catalyst and reaction knowledge and an understanding that is
used to solve catalytic problems. Easy access, retrieval, and
archival of this knowledge improves the decision-making
ability and productivity of the process. The knowledge
system is the information retrieval system that integrates
multiple information sources and integrates them in a logical
fashion. The information sources include experimental data,
modeling, and theoretical data, from literature and from
proprietary corporate files. For example, information from
kinetic modeling and molecular modeling on reaction
elementary steps for a particular catalytic reaction is stored
so that it can be re-used easily for a different catalytic
reaction which shares one or more elementary steps with the
previous reaction. This information may be textual,
numerical, structural, or logical, and may reside internally or
remotely from the database. The knowledge management
system preferably includes an interactive interface for use by
the researcher in each step of the process.

Description of the Catalyst Development Engine

The role of the KC is to greatly augment the scientist’s
ability and efficiently in retrieving knowledge that is critical
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to guiding the catalyst development. These tools aim to
maximize learning and guide catalyst selection. Critical
tasks are described further below.

(1) Develop an empirical learning model

Composition/structure, particle size, support, and promot-
ers can affect the surface properties of catalysts. Developing
trends relating key surface properties to these parameters
will assist the scientist in turning the catalyst properties. An
analysis of existing experimental and theoretical data with
machine learning algorithms such as tree analysis can be
used to uncover patterns in the theoretical and experimental
data even in highly non-linear systems. Data for important
descriptors are mined and correlations between performance
and these descriptors are formulated. Descriptors include
synthetic parameters as well as experimental and theoretical
bulk and surface properties. This information can be used to
construct a working hypothesis for the catalytic reaction,
which is tested against new data and improved, at each
iteration of the CDE cycle.

(2) Construct a microkinetic model to screen reaction

mechanisms and identify key kinetic parameters

Microkinetic modeling will be used to narrow the list of
plausible reaction mechanisms that will be investigated
further by molecular modeling. A microkinetic model will
be built for various postulated reaction mechanisms. The
performance of the materials will be calculated as a function
of temperature and reactant and product concentrations for
a catalyst training set. Mechanisms that can reproduce the
general trends in experimental data will be studied further.
Sensitivity analysis will be performed on the rate constants
of elementary steps to identify the critical kinetic parameters
and how they affect overall performance. These critical
parameters will be related to materials properties using data
on a series of materials in order to identify trends more
easily, and using scientific prior knowledge and know-how.

(3) Construct theoretical models

Computational chemistry will be used to provide under-
standing of the reaction mechanism and confirm/strengthen/
propose hypotheses (relating key catalyst properties to
kinetic parameters of elementary steps. NDI will use ab
initio DFT periodic slab molecular modeling techniques to
examine the elementary surface reaction steps for the reac-
tion. These methods will be used to calculate binding
energies, activation barriers, as well as rate constants for
elementary steps. Calculated rate constants will be inserted
in the microkinetic model. Critical rate constants will be
correlated with surface properties in order to identify key
material properties. The initial calculations will be done on
a catalyst “training” set. The catalyst training set will be
synthesized and tested to validate the calculations and
identify any limitations of the model. The model will then be
refined to account for differences between calculated and
observed surface properties and rate constants and to
improve the model. As lead catalysts are identified
experimentally, the modeling work will focus more specifi-
cally on these materials.

(4) Virtual screening to guide catalyst selection

Faster semi-empirical methods (calibrated with ab initio
calculations) are used to calculate kinetic parameters and
insert them into a kinetic model. Catalytic performance is
calculated as a function of surface composition, structure,
atomic spatial arrangement using Monte-Carlo simulation.
This kinetic model can be coupled with an optimization
algorithm that assists in search for the optimal catalytic
surface using a minimum number of virtual experiments.
Theoretical results are validated with experiments.

EXAMPLE

Nitrogen Oxide Decomposition Catalyst
Development

The invention may be better understood by illustration,
considering an example. In this example, the CDE is used to
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identify and optimize commercially viable NO decomposi-
tion catalysts for use with lean-bum engines. These new
catalysts enable the rapid large-scale commercial use of
lean-burn engines and the realization of associated economic
and environmental benefits. Currently, catalytic converters
for traditional combustion engines are based on three-way
catalysts (TWC’s), which are incompatible with lean-bum
engines.

The key technical barrier for a viable catalyst seems to be
the higher affinity of oxygen for the catalytic site relative to
the minority NO component—site competition. Since oxy-
gen is present in much higher concentrations, the rate of NO
decomposition is too slow. NO decomposition is thermody-
namically favored over a wide temperature range of practi-
cal interest and the only reaction products are nitrogen and
oxygen. The goal of the example of the present invention is
aimed at identifying NO decomposition catalytic material
that overcome the limitations of current catalysts and would
be viable for commercial use.

A. Review of Past Catalyst Results

Despite extensive research efforts over the past 10-12
years, the currently known catalysts that decompose NO
under the oxygen-rich conditions of the lean-bum engine
still have severe limitations preventing their commercializa-
tion. These limitations include low activity, inhibition by
high oxygen levels, poisoning by oxides of sulfur (SO,), and
inadequate hydrothermal stability. To put the required com-
mercial catalyst performance into perspective, the average
rate of NO decomposition (for a 80% removal level) needs
to be 1.3x10™* mol g~! min~, calculated over the range of
temperatures of operation (200-600° C.). This rate is about
50 times greaser than the estimated rate on the most active
catalyst identified to date.

Recently studied catalysts fall into three general catego-
ries: transition metals, complex metal oxides, and metal
ion-exchanged zeolites. The present example focuses on the
better, but still far from adequately performing active cata-
Iytic components. Table 3 presents an overview of some of
the better performing catalysts from past work.

TABLE 3

Potential NO Decomposition Catalysts Evaluated

Catalyst

Advantages

Disadvantages

Cu-ZSM-5 (GM)

Fe-ZSM-5

Precious metals

Pt/alumina

Co oxide
Fluorite and
Brownmillerite
(Eltron Research)

erovskite

Appears to be active for
both NO adsorption and
decomposition

Appears to be active for
both NO adsorption and
decomposition

Good hydrothermal stability

Less sensitive to SO,
poisoning
Less sensitive to SO,
poisoning

Up to 100% NO removal
High concentration of O
vacancies active for NO
adsorption and
decomposition

Molecular modeling study
done with performance
testing (Japan)

Poor hydrothermal
stability—dealumination
of the zeolite

SO, poisoning

Poor hydrothermal
stability—dealumination
of the zeolite

SO, poisoning

NO, formation

NO, formation

NO, formation

SO, poisoning

Seems to rely on exhaust
gas CO and HC for NO
removal

Work done with no O,
present

Low NO decomposition
activity
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TABLE 3-continued

Potential NO Decomposition Catalysts Evaluated

Catalyst Advantages Disadvantages

WO; +
Pt/alumina (Ford)

WO; has a positive effect
on NO removal

Best results were not up
to desired 80% removal

Test was done with SO, level
present Life information not
reported

Reduction may
significantly contribute to
NO removal since CO
and HC are present

The problem of hydrothermal stability affects most zeolite
based catalysts, especially Cu-ZSM-5, as set forth in M.
Iwamoto and H. Hamada (Catal. Today, 10, 57 (1991)). The
zeolite catalysts are active for NO decomposition but they
are prone to dealumination and loss of crystallinity at high
temperatures (above 973 K) in the presence of water vapor
(typically comprising 8-10% of the exhaust). Hence,
Cu-ZSM-5 is unlikely to be stable enough to pass the
durability test of the FTP (Federal Test Procedure), as set
forth in J. N. Armor (Catal. Today, 26, 99 (1995)).
Furthermore, SO, poisons Cu-ZSM-5. Since the hydrother-
mal stability and poisoning problems of ZSM-5 based
catalysts still exist despite extensive efforts to improve them,
the present inventors focused initially on metal and metal
oxide catalytic material as opposed to zeolite-based systems.
However, Cu-ZSM-5 is used as a reference catalyst in the
development of our models in order to understand the
properties of the active Cu species.

Noble-metal catalysts are active, as evidenced by their
proven performance in the TWCs, but they do not have
sufficient NO decomposition activity for lean-burn engine
application without serious modification. Supported noble-
metal catalysts resist SO, poisoning better than Cu-ZSM-5
apparently because of their ability to oxidize the SO, to SO;.

B. Microkinetic Analysis

The observed rate of NO decomposition on Pt is propor-
tional to (NO)/(O,). The reaction is strongly inhibited by O,,
which competes for adsorption sites with NO. In addition,
the presence of O, in the feed leads to the oxidation of the
Pt surface, and its reconstruction, at high temperatures. The
oxidized surface is less active than Pt. The observed rate
expression on oxidized Pt resembles that observed on bulk
metal oxides, CuO, NiO, Co;0,, and Fe,O5. On oxides the
NO decomposition sites would be oxygen vacancies.

Amirnazmi and Boudart (J. of Catalysis 39, 383-394
(1975)) proposed the following mechanism:

NO + * —— NO* (1) (irreversible step)
NO + NO* —= NO + O* (2
N0 ——= N» + Opobike ©)

O* + Opgpie — = Oz + * (4) (reversible step)

Assuming that step (1) is the rds, step (4) is quasi-
equilibrated, and O* is the most abundant intermediate, this
mechanism leads to the rate expression:

rate=k; (NO)/(1+K ;O ~4/K(NO)/(O,) with k=k, and K=K (Eq. 1)
This mechanism invokes the formation of a mobile oxygen

atom. N,O is observed as product of NO decomposition at
low temperatures on Pt
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Another possible mechanism for NO decomposition on
metals involves the dissociation of adsorbed NO in adsorbed
nitrogen and oxygen:

®

NO + * =T—= NO*

@
NO* + * —= N* + OF

©)]
NO + N* —— N,O*

*
NyO* — N + O*

®
O* + O* Z=—= 0 + 2*

One can derive a similar rate the following rate expression,

rate=k, K, (NO)/(1+{K4(0,) }**)*~k/K(NO)/(O,) with k=k,K, and
K- (Eq. 2)

assuming that step (2) is the rds, steps (1) and (5) are
quasi-equilibrated, and O* is the most abundant surface
species. There is no need to invoke mobile oxygen in
this case. Based on this preliminary kinetic analysis, a
more active catalyst would require an increase in k or
a decrease in K. In both mechanisms, decreasing the
heat of adsorption of O, should result in a decrease in
K. This analysis points to the oxygen binding energy as
a key descriptor.

At high temperature N,O is no longer observed as a
product. A simpler mechanism was studied in more detail
with microkinetic modeling to assess whether it could
explain experimental results collected on 5 wt % Pt/alumina
catalyst. The data were collected in a fixed-bed reactor at
atmospheric pressure, temperature between 773 and 913 K,
concentration of NO between ~200 and 1760 ppm, and with
0% or 1% O, in the reactor feed stream. Exemplary data
points are illustrated in FIGS. 4a and 4b.

The reaction mechanism includes four steps:

®

NO + * =—= NO* Molecular adsorption of NO

@

NO* + * --—— N* + O* Dissociation of adsorbed NO

3)
N* + N* 2 N+ 2* Associative desorption of adsorbed nitrogen

*

O* + O* 20, + 2* Associative desorption of adsorbed oxygen

Four parameters are required for Steps 1, 3, and 4 of the
reaction scheme: (1) an entropy change to form the activated
complex from a gas-phase species to an adsorbed species;
(2) an enthalpy change to form the activated complex from
a gas-phase species to an adsorbed species; (3) an entropy
change to form a stable species on the surface; and (4) an
enthalpy change to form a stable species on the surface.
Parameters 1 and 2 determine the temperature dependent
rate-constant for an adsorption step and parameters 3 and 4
determined the equilibrium constant for that given step. Step
2 requires only two parameters: (1) an entropy change to
form the activated complex for the forward step; (2) an
enthalpy change to form the activated complex for the
forward step. The equilibrium constant for step 2 is deter-
mined from the gas-phase thermodynamics of the overall
reaction to convert NO to N, and O, [2NO ON,+0,]. The
model utilizes thermodynamics properties of gas-phase
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reactants and products that are calculated using the
entropies, enthalpies, and heat capacities such as those
published in Yaw’s (Yaws, No. 35 (1999)).

The reaction scheme requires fourteen parameters to
describe the catalytic kinetics. The number of parameters
may be reduced further with the following assumptions.

1. The pre-exponential factors for the adsorption steps
(forward of step 1 and reverse of step 3 and 4) are
calculated from collision rate theory assuming a stick-
ing coefficient of 1.0. Accordingly, the pre-exponential
factors for these steps are given by:

V2pmkgT

( 1 ]_1.0123><106
atm cm?s

2. The pre-exponential factor for step 2 is determined
assuming no entropy change between the adsorbed NO
species and its activated complex.

3. Both N* and O* species are mobile species on the
surface.

4. The energetics for step 3 are obtained from ab initio
molecular modeling on Pt(100):
Activation energy for reverse step 3: E,, 5 =22 kJ/mol
Enthalpy of reaction of step 3: AHy 5 =34 kJ/mol

5. The activation barrier for forward step 1 is obtained
from ab initio molecular modeling on Pt(100):
E,, , =21 kJ/mol

6. The activation barrier for the forward step 4 is obtained
from Andersson et al. (J.

Phys. Chem. B., Vol. 103, p10433-10439, (1999)).
Eg,, 5 =21 kJ/mol

7. Adsorbed NO* is an immobile species on the surface.

8. The heat of O, adsorption is a function of adsorbed O*

coverage as proposed by Andersson et al:

Enthalpy of reaction of step 4: AHyy ,=AH.,, coverage
(100-0.0,.) where

the heat of adsorption of O, at zero coverage is obtained

from molecular modeling on Pt(100), AH,.,,, . pverage
=290 kJ/mol

a is a scaling factor between 0 and 100

0, is the fractional coverage of adsorbed oxygen.
With these assumptions, four parameters are adjustable in
the fitting of the experimental data. Their fitted values are:

AH,, ;=-135.0 kJ/mol

Ey,, »=142.0 kJ/mol

a=29.5

AS,. , =-28.2 J/(mol.K)

The reaction scheme and corresponding parameters
describe reasonably well the experimental data in the
absence of oxygen in the reactor inlet (FIGS 3¢ and 3b). This
model explains quite well the observed changes in the rate
of NO decomposition with changing inlet NO concentra-
tions. When O, is added to the feed, the model over predicts
the rate of NO decomposition (an example of which is
illustrated in FIG. 4¢) suggesting that additional data are
needed to adjust the coverage dependence of the heat of O,
adsorption.

The values of the adjustable parameters were analyzed for
reasonableness. Molecular modeling calculations show that
the heat of NO adsorption decreases with increasing cover-
age of NO and O,. The lowest value is =165 kJ/mol at
combined coverage of NO and O equal to 0.75. However,
this value does not extend to the high oxygen coverage
predicted by the model (over 90% coverage by adsorbed
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oxygen). Accordingly, the lower heat of adsorption calcu-
lated by the model for step 1 is reasonable. The forward
activation energy for step 2 is higher than the 107 kJ/mol
value predicted by molecular modeling on Pt(100), but again
the latter value is valid at low coverage, and an increase in
activation barrier is expected as coverage increases.

A subsequent sensitivity analysis showed that the overall
rate was most sensitive to the heat of adsorption of oxygen
(step 4) followed by the activation energy for the dissocia-
tion of adsorbed NO (step 2). These parameters are two most
important descriptors suggested by this analysis. More com-
plex mechanisms need be investigated in a similar fashion to
explain the observed formation of N,O as low temperatures.

C. Identify Key Catalyst Properties

Based on the previous microkinetic analysis, oxygen
binding energy is a key property affecting activity. In order
to confirm this hypothesis, we attempted to correlate k/K
with a measure of the oxygen binding energy, using pub-
lished data for various catalytic systems. There is precedent
for such an approach. The logarithm of rate constants of N,O
decomposition and O, exchange at a given T on many
oxides correlate linearly with each other and with the lattice
parameter of these materials for each crystal structure. Since
the rate-determining step in the exchange reaction is the
desorption of O,, the rate constant for N,O decomposition
depends on the heat of adsorption of O, (assuming non-
activated O, adsorption), which in turn depends on the
metal-oxygen distance of the oxide. By analogy with these
results, a correlation between k/K and the binding energy of
oxygen could exist for NO decomposition. Using Equation.
3, values of k and K can be obtained from the plot of 1/r
versus [0,] at a given T.

1r=(U/NOD+{K/HNOD}[O-] (Eq. 3)

Published values of k and K for Pt/Al,04(0.6 wt % Pt,3.7%
dispersion) and various oxides at 973K may be used (such
as those published in Amirnazmi and Boudart, J. of Catalysis
39, 383-394 (1975)). Values of k and K may be estimated
from published variations of 1/v, with [O,] at 773K for
Cu-ZSM-5(such as Si:Al=26, Cu:Al=0.83, Cu content: 4.9x
107* mol g%, as published in Y. Li and W. K. HallJ. Cazal.,
129, 202 (1991)). Values of k were calculated assuming a
site density of 1.19x10*® c¢cm™ for Pt and 10*° cm™ for
oxides. For the oxygen binding energy, measured by (-AH,,
o), one may use the enthalpy of formation of the oxide in
the case of oxide materials (such as that published in CRC
Hanbook of Chemistry and Physics, 747 ed., D. R. Lide,
CRC Press (1993)). For Pt, one may use the energy of
desorption of O, at high coverage because Pt does not form
a stable oxide at those temperatures. For Cu-ZSM-5, one
may used the enthalpy of the release of O, from Cu,*(0*")
to Cu*, such as that calculated by the Density Functional
Theory (DFT) quantum chemical methods (Bell et al., J.
Phys. Chem. 100, p17582-17592 (1996)). The values of k
and K are summarized in Table 4.
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TABLE 4

20

Kinetic Parameters for Various Catalysts at Two Temperatures

T (K)
773 973
AH k KK AH k KK
(&I K (em?® (atm cm® (&I K (em® (atm cm®
Catalyst mol™) (atm™) mol™*s™) mol™?s™) mol™) (atm™) mol ') mol s
PYALO,  -201.0 2159.4 60200 279 -201.0 360 758823  2107.8
Co,0, -4162  367.1 414 1.1 -4039 90 722 8.0
Cu0 -2744  496.7 288 0.6 -257.5 130 834 6.4
Fe,0, — — — — -502.7 60 19 0.3
NiO — — — — -4013 110 30 0.3
Cu-ZSM-5 -163.2 635 16396 258.2 — — — —
The variation of k/K with AH at 773K and 973K are
shown in FIG. §. Although the number of data points is 20 TABLE 5-continued
limited, k/K increases as AH increases at both temperatures.
Catalysts NiO and CuO do not fit the trend well. Variable  Description of Oxide MxOy Type
As AH increases further (Or the O)Fygen binding energy X16 Refraction Index of Oxide, RI Continuous
decreases), the rate of NO decomposition should decrease. X17 Polarizability of Oxide (E-24 cm3) Continuous
Since NO and O, compete for adsorption on the same sites 25 X18 Polarizability of Oxygen Anion (cm3) Continuous
of these catalysts, as the affinity of these sites for oxygen X19 Tonization Energy of Electron in Oxide Continuous
. . &
decreases, their affinity for NO should eventually do too. (~1/X16%) ] ]
Thus, an optimal value of AR likely exists and a site with X20 Bulk Structure of Oxide Discrete
. . L . . Y1 Log[Observed Rate Constant at 873 K and 200 Continuous
such oxygen affinity should in principle have higher activity.
Based on the data of FIG. 4 ials with AH>~-200 30 o NO, klem =25 - 1]
ased on the ate} 0 S materle} s wit > Y2 Observed Activation Energy for NO Continuous
kJ/mql should be investigated further in the next cycle of Decomposition, Eo (keal/mol)
experiments.
Another complementary approach for the identification of
important materials descriptors for this reaction is the use of
35

machine learning and pattern recognition techniques to
unearth relationships between materials properties, prepara-
tion and process parameters (i.e., synthesis method, raw
materials, drying temperature, etc.) and materials perfor-
mance parameters. For example, using literature experimen-
tal values of NO decomposition activity and activation
energy on a series of oxide materials and a list of 21
tabulated properties of the oxides or of their respective
metallic element, we applied recursive partitioning to
unearth relationships between dependent and independent
variables as well as between dependent variables. This also
allowed us to identify independent variable with redundant
information. The variables are shown in Table 5.

TABLE 5
Variable  Description of Oxide MxOy Type
X1 Atomic Number Discrete
X2 Oxide Formula Discrete
X3 Group of Element M Discrete
X4 Melting Point of Oxide (° C.) Continuous
X5 Observed Activation Energy for O2 Exchange, Continuous
E1 (kcal/mol)
X6 Observed Activation Energy for N2O Continuous
Decompostion, ENd (keal/mol)
X7 Heat of Formation of Oxide, ~AH®,05*107° Continuous
(kJ/mol O2)
X8 Atomic Radius of M (Ang.) Continuous
X9 Covalent Radius of M (Ang.) Continuous
X10 Magnetic Succeptibility (E-06 cgs) Continuous
X11 Electronegativity of Cation Mn+ Continuous
X12 First Tonization Potential of M (V) Continuous
X13 Electric Conductivity of M (E+06/ohm - em)  Continuous
X14 Thremal Conductivity of M (W/(K - cm) Continuous
X15 Polarizability of M (E-24 c¢m3) Continuous
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The dependent variables are Y1 and Y2 and the indepen-
dent variables are X1 through X21. There are no indepen-
dent variables from the catalyst preparation or testing pro-
cess in this example. The input data is shown in the Table
illustrated in FIG. 6. Results of the recursive partitioning
analysis are shown in Tables 7a and 7b. Tables 7a and
7b—Average Independent Variable (Descriptor) Usage Fre-
quency in the Construction of 1000 Trees

TABLES 7a and 7b

Average Independent Variable (Descriptor)
Usage Frequency in the Construction of 1000 Trees

Y1 Y2
Independent Total Independent Total
Variable Frequency (%) Variable Frequency (%)
X5 31.3% X5 61.9%
No split 30.1% X6 23.1%
X20 9.4% X19 12.7%
X17 9.1% No Split 0.7%
X3 4.3% X4 0.5%
X7 4.0% X1 0.3%
X8 2.5% X17 0.3%
X4 1.7% X8 0.1%
X15 1.4% X20 0.1%
X10 1.3% X13 0.1%
X1 1.2% X10 0.1%
X13 1.2% X16 0.1%
X16 0.9% Total 100.0%
X18 0.5%
X19 0.4%
X6 0.3%



US 6,763,309 B2

21

TABLES 7a and 7b-continued

Average Independent Variable (Descriptor)
Usage Frequency in the Construction of 1000 Trees

Y1 Y2
Independent Total Independent Total
Variable Frequency (%) Variable Frequency (%)
X12 0.2%
X9 0.1%
X14 0.1%
Total 100.0%

In this example, the most important descriptor that
describes both Y1 and Y2 is clearly X5, the apparent
activation barrier for O, exchange reaction. This confirms
the finding by Winters et al. that the fact that the ability of
the material to desorb oxygen is critical. In the case of Y1,
X5 is the only significant independent variable that describes
the data; since the probability of no-split ranks second, all
other variables are statistically insignificant. This is due to
the small size of the dataset. In the case of Y2, X6, the
measured apparent activation barrier for N,O
decomposition, and X19, the ionization energy of an elec-
tron in a surface oxygen ion vacancy, are significant as well.
Decomposition of NO and decomposition of N,O share
common elementary steps such as the adsorption of NO, the
desorption of O,, and possibly others. Also N,O is observed
as a product of NO decomposition on Pt at low temperatures.
The importance of X19 suggests that the chemisorption of
NO is connected with the transfer of an electron from the
material to the NO molecule. The lower X19 is, the stronger
the chemisorption of NO and also the ability of the NO to
dissociate will be.

The fact that X7, the standard heat of formation of the
oxide, which is a proxy parameter for the oxygen biding
energy, was not significant for either Y1 or Y2, prompts a
closer examination of the data. In FIG. 7, Y1 is plotted
against X7.

The materials can be classified in two classes: In class I
materials, as X7 increases, Y1 decreases; and in class II
materials, Y1 secems less sensitive to X7. Class I materials
confirms the conclusions of the microkinetic analysis and
FIG. 5. In class II materials, the rate of NO decomposition
seems to increase with increasing X7, although there is more
scatter in the data. Class II materials are generally non-
reducible oxides that have strong oxygen binding energy.
The reaction likely operates with a different mechanism on
these materials. This points to another region of potential
interest, materials with large X7 wvalues, which requires
further exploration.

In this example, recursive partitioning using ensemble of
trees may also be effective in pointing to redundant inde-
pendent variables that the user may not have rationalized in
the variable selection. For example, thermal and electrical
conductivity variables (X13 and X14 respectively) may be
highly correlated. Variables X5 and X6 may also be found to
be closely related which correctly suggests that the decom-
position of N,O is also inhibited by adsorbed oxygen.

D. Guide Selection of Materials for Subsequent
Cycle of Experiments (Virtual Screening)

In order to guide the experimental effort and minimize the
number of experiments to be carried out, it is useful to
pre-screen potential materials by calculating estimates of the
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critical kinetic and thermodynamic surface parameters
(descriptors) that were identified previously; or more pref-
erably by calculating estimates of the NO decomposition
activity. This allows the scientist to look for trends in a class
of virtual materials and to test the hypothesis put forward.
Semi-empirical computational chemistry methods such as
Extended-Huckel Theory that have been calibrated with
first-principle molecular modeling results are useful for such
parameter estimations because they are much faster than ab
initio techniques and while they yield less accurate absolute
calculation they generate accurate trends across materials
classes. The estimated parameters can be used in a Monte-
Carlo kinetic simulation, which takes into account kinetic
elementary steps and the various surface sites, their concen-
tration and their spatial arrangement.

Such simulations may, for example, be carried out on
Pt(100) and Rh(100) to illustrate the value and tremendous
potential of this approach to catalyst discovery and devel-
opment efforts. The elementary steps that would be allowed
to take place on the metal surface in the simulation are listed
in FIG. 8. The binding energies of the relevant adsorbed
species, calculated using DFT, are shown in Table 8. Only
the most probable adsorption sites are examined in this
example. For example, nitrogen and oxygen adatoms will
only occupy the bridge and hollow sites. Preferably, the atop
sites would not be examined. The values for the most
favorable adsorption sites are presented in italics in Table 8.
The activation energies for the elementary steps on Pt(100)
are shown in FIG. 9. For example the activation energy for
the dissociation of NO on a bare Pt(100) surface was
calculated at 107 kJ/mol. The effects of lateral interactions
(or coverage) on the energies were calculated using two
techniques. The through-surface interactions which occur
via charge transfer between two adsorbates through the
surface. These interactions were estimated using Bond
Order Conservation (BOC) predictions and fitting the BOC
parameters to representative DFT results. The through space
adsorbate-adsorbate interactions include Van der Waals
forces and static electronic interactions. They were predicted
using the Merck Molecular Force Field Model. For example,
the effect of oxygen coverage on the oxygen binding energy
is shown in FIG. 8.

TABLE 8
Binding Energies of Adsorbed Species on Pt(100

Atomization 4-hold
Species Energy Atop Bridge Hollow
NO 671.5 136.6 214.3 157.8
N — — 403.1 414.4
(¢] — — 394.0 359.4
N,O 1225.3 26.5 11.9 —
NO, 1073.4 118.8 74.4 —

The simulation tracks the occurrence of elementary physi-
cochemical steps along with their corresponding Kinetics to
follow the fate of each individual molecule that adsorbs on
the Pt surface. The kinetics for adsorption. desorption and all
surface reaction steps enumerated in FIG. 8 are followed as
a function of time and process conditions. All sites on the
surface are explicitly modeled. This enables to capture the
effect of the local composition as well as the atomic structure
on the catalytic kinetics.

The simulations start by allowing first the surface to
equilibrate with respect to the gas phase partial pressures of
the reactants. Once the initial surface structure is equili-
brated the surface reactions are allowed to take place.
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Subsequently, the simulation continues for some time to
achieve the steady state. The number of product molecules
that desorb can be directly counted, so that an explicit
measure of the turnover frequency can be calculated and
compared to experimental values. The simulation can then
be run as a virtual experiment by changing the temperature,
partial pressures, surface structure, and even the metals used.
Using these calculated data, the turnover frequency (TOF)
for steady-state formation of N, and NO, may be calculated
on Pt(100) at several temperatures and [0,]=60.8 torr and
[NO}=0.468 torr (FIG. 11). Similar calculations may be
performed for Rh(100). The binding energies are shown in
Table 9 and the TOF values are plotted in FIG. 12 for
Rh(100). The Monte Carlo simulation results show that
Rh(100) is inactive for NO decomposition and NO oxidation
because oxygen adsorbs strongly to the surface and inhibits
NO adsorption and reaction.

TABLE 9

Binding Energies of Adsorbed Species on Rh(100)

Atomization 4-hold
Species Energy Atop Bridge Hollow
NO 671.5 219.6 263.8 256.6
N — 353.6 475.4 547.8
(0] — 376.8 474.4 496.7
N,O 1225.3 539 — —
NO, 1073.4 177.4 — —

Catalysts of Pt and Rh supported on y-alumina may be
synthesized and tested in a fixed-bed reactor for NO decom-
position at 773 and 873K, [NO]=1.338 torr and [0, ]=0 torr.
The catalyst properties and corresponding TOF values for
N, formation are shown in Table 10. No N, O and NO,
products were detected. The Pt catalyst was obtained from
Alfa Aesar; the Rh catalyst was prepared by incipient
wetness impregnation of a La Roche VGH-22 y-alumina
with an aqueous solution of Rh(NO,),. The TOF values on
Pt may be calculated from integrated NO conversion values
assuming first order in NO, which may be verified experi-
mentally. The oxygen inhibition need not be taken into
account in this calculation. A quantitative agreement
between the experimental and simulation results is not
expected. The simulations may be carried out over model
Pt(100) surfaces which contain distinct and active four-fold
adsorption sites. The experiments may be performed on
supported particles which likely contain a much more sig-
nificant fraction of the more stable closed-packed surfaces.
Simulation results run on the (111) surface indicate that this
surface would be relatively inactive due to the NO disso-
ciation barrier height which is greater than 200 kJ/mol. The
actual measured rate over supported Pt particles is most
likely some ensemble average from simulation results over
both the Pt(100) and Pt(111) surfaces. The simulations over
Pt(100) and Pt(111) surfaces therefore provide upper and
lower bounds respectively for the actual experiments.

Although the predicted and measured TOF values for N,
formation do not agree, the Monte Carlo simulation does
predict the relative decrease in activity going from Pt to Rh
surfaces.
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TABLE 10

Pt and Rh catalyst properties

N2 formation,
Metal Content Metal TOF (s — 1
Catalyst (weight %) Dispersion (%) 773K 873 K
Pt/AI203 4.8 29 0.0004 0.0015
Rh/AI203 0.9 85.9 0 0

These results are useful as well to the microkinetic model
as it provides energetic values as a function of coverage.
This information is very valuable to the researcher who can
focus experiments on more promising leads as predicted by
the virtual screen. Virtual screening saves valuable experi-
mental resources and provides insight into the surface chem-
istry. Additional surfaces of Pt and Rh and their alloys can
be screened with this method.

Materials Search Strategy Based on Initial Cycle of CDE

The MC simulation, microkinetic analysis, and data min-
ing results all show that both the NO activation energy and
the heat of adsorption of oxygen are important in controlling
the surface chemistry. To probe other materials, the
researcher can use the scientific framework defined herein to
define new material search strategies. The working hypoth-
esis acts as an initial guide but will be refined as one
proceeds through subsequent rounds of the testing and
knowledge cycles. Ab initio DFT calculations, semi-
empirical extended Huckel calculations, and literature data
may be used to construct periodic trends, such as those
illustrated in FIG. 13. FIG. 13 illustrates the challenge in
finding a single active metal. The two parameters that appear
to control the kinetics (the oxygen binding energy and the
NO activation energy) are shown to be directly correlated.
Although metals such as Pd and Cu bond oxygen much more
weakly, they are not likely to be active enough to dissociate
NO. Metals such as Rh and Ru, on the other hand, can
readily dissociate NO but they tend to readily poison.

Based on the results from the initial run through the
knowledge cycle, three new search strategies may be iden-
tified to circumvent the limitations found in FIG. 13. They
include: 1) generation of active atomic structural ensembles;
2) alloy formation; 3) the formation of magnetic alloys.

Initial quantum chemical results indicated that the specific
atomic surface structure of the metal can greatly affect the
nature of the transition state and hence the activation barrier
for NO dissociation. FIG. 14, for example, shows the
comparison of DFT and surface science results for the
activation of NO over different ideal Pt surfaces. NO may be
found to be inactive on the Pt(111) surface. The surface
science results would suggest that the more open surfaces
such as Pt(210) and Pt(410) can readily activate NO. The
DEFT results performed in the CDE confirm that the P1(210)
and Pt(410) are more active, but the activity increase is due
not only to the increase in the surface corrugation but also
to the unique structure of the 4-fold site. In addition to the
Pt(410) surface, the Pt(210) and Pt(100) surfaces are also
fairly active. The nature of square metal atom arrangement
seems to be unique. It provides a special site whereby NO
dissociates over the 4-fold hollow site in the center and
produces N and O products which sit at neighboring bridge
sites. It is important to note that DFT calculations for the NO
dissociation on this 4-fold site show that the N and O in the
transition state along with the resulting N* and O* surface
species do not share any metal atom neighbors. The transi-
tion state is such that two Pt atoms stabilize N* and two
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other atoms stabilize O* (FIG. 15). The removal of metal
atom sharing in both the transition states and the product
states dramatically lowers the activation barrier. The 4-fold
site is unique in that it will readily activate NO but should
not be poisoned by the products. The previous MC simula-
tions on Pt(100) confirm that effect. Indeed the calculated
rate of NO decomposition on Pt(100) was much greater than
the measured rate on supported particles. Modifiers that
could stabilize this site would be of interest.

Bimetallics systems is a second class of materials that
could lead to increased rate of NO decomposition based on
the CDE hypothesis. Bimetallic systems provide a mean to
optimize the M—O bond strength along with the activity.
One method to vary the oxygen binding energy systemati-
cally is to alloy a group VIII metal with a group IB metal in
order to form bimetallic particles. A good example is the
Pd—Au system, where Au lowers the binding energy of
oxygen leading to orders of magnitude increase in the rate of
the H,O, reaction. Group VIII metals have sites where O,
has a higher affinity for the metal site than NO but the site
is active for the catalytic decomposition of NO to N, and O,,.
These noble metals are also good oxidation catalysts and this
can lead to more complicated and offsetting chemistry such
as the oxidation of NO to NO,. Other modifiers could be
used as well. Modifiers such as Sn and group VII elements
have been used to modify the surface properties of group
VIII metals in other reactions. There are indications in the
literature that suggest that NO coupling can occur over PtSn
alloys resulting in the formation of either N, O (g) or N, (g)
and O*. This provides a route in which we can alter the
dependence of NO activation and oxygen poisoning. NO
coupling provides an alternative path to NO removal, which
may not be as sensitive to oxygen surface coverage as direct
NO dissociation.

Acthird possible strategy is the use of magnetic alloys. The
details of the electronic structure of the reactant and the
transition state suggest that the introduction of a second
metal with specific magnetic properties may help to lower
the NO activation barrier. NO is unique in that it already has
one electron in an antibonding NO* orbital. Tuning the
metal surface structure so that it can inject an extra electron
into the NO* antibonding orbital would enable a low energy
path to the activation of NO and minimize oxygen poisoning
at the same time. Indeed, the activation barrier for NO
dissociation on Pd;Mn(100) alloys is lower by 60-80 kJ/mol
than the value on Pd(100). Manganese provides the appro-
priate magnetic centers to offer electrons to Pd. On the other
hand, Pd would not be very susceptible to poisoning by
oxygen.

E. Testing Cycle

Next, a library of proposed materials is synthesized and
evaluated. Scaleable, high-throughput experimental meth-
ods are preferable as they allow more materials to be
synthesized and tested under a broader process condition
space and a much faster rate. This allows for the overall
CDE cycle to be shorter and for the generation of enough
data to increase the accuracy of the data-based models. A
library of materials is created by varying composition, raw
material suppliers, synthesis methods, or synthesis process
parameters, or others. Both the dependent variables, i.e., the
activity of NO decomposition and product selectivity and
the key descriptors (independent variables) are quantified.
The activity and selectivity are measured at several tem-
peratures and several feed gas compositions, using steady-
state or transient experiments, so that minimal kinetic infor-
mation is available for meaningful comparison of materials.
The oxygen binding energy is calculated from the measured
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energy of desorption of dioxygen by thermal desorption or
other technique. The new data are then added to the knowl-
edge repository and the CDE cycle is iterated.

Certain portions of the invention may be performed by an
automated processing system. Viewed externally in FIG. 16,
an exemplary computer system designated by reference
numeral 101 has a central processing unit located within a
housing 108 and disk drives 103 and 104. Disk drives 103
and 104 are merely symbolic of a number of disk drives
which might be accommodated by the computer system.
Typically these would include a hard disk drive and option-
ally one or more floppy disk drives such as 103 and/or one
or more CD-ROMSs, CD-Rs, CD-RWs or digital video disk
(DVD) devices indicated by slot 104. The number and types
of drives typically varies with different computer configu-
rations. Disk drives 103 and 104 are in fact options, and they
may be omitted from the computer system used in connec-
tion with the processes described herein. Additionally, the
computer system utilized for implementing the present
invention may be a stand-alone computer having commu-
nications capability, a computer connected to a network or
able to communicate via a network, a handheld computing
device, or any other form of computing device capable of
carrying out equivalent operations.

The computer also has or is connected to or delivers
signals to a display 105 upon which graphical, video and/or
alphanumeric information is displayed. The display may be
any device capable of presenting visual images, such as a
television screen, a computer monitor, a projection device, a
handheld or other microelectronic device having video dis-
play capabilities, or even a device such as a headset or
helmet worn by the user to present visual images to the
user’s eyes. The computer may also have or be connected to
other means of obtaining signals to be processed. Such
means of obtaining these signals may include any device
capable of receiving images and image streams, such as
video input and graphics cards, digital signal processing
units, appropriately configured network connections, or any
other microelectronic device having such input capabilities.

An optional keyboard 106 and a directing device 107 such
as a remote control, mouse, joystick, touch pad, track ball,
steering wheel, remote control or any other type of pointing
or directing device may be provided as input devices to
interface with the central processing unit.

FIG. 17 illustrates a block diagram of the internal hard-
ware of the computer of FIG. 16. A bus 256 serves as the
main information highway interconnecting the other com-
ponents of the computer. CPU 258 is the central processing
unit of the system, performing calculations and logic opera-
tions required to execute a program. Read only memory
(ROM) 260 and random access memory (RAM) 262 con-
stitute the main memory of the computer.

A disk controller 264 interfaces one or more disk drives
to the system bus 256. These disk drives may be external or
internal floppy disk drives such as 270, external or internal
CD-ROM, CD-R, CD-RW or DVD drives such as 266, or
external or internal hard drives 268 or other many devices.
As indicated previously, these various disk drives and disk
controllers are optional devices.

Program instructions may be stored in the ROM 260
and/or the RAM 262. Optionally, program instructions may
be stored on a computer readable carrier such as a floppy
disk or a digital disk or other recording medium, a commu-
nications signal, or a carrier wave.

Returning to FIG. 17, a display interface 272 permits
information from the bus 256 to be displayed on the display
248 in audio, graphic or alphanumeric format. Communi-
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cation with external devices may optionally occur using
various communication ports such as 274.

In addition to the standard components of the computer,
the computer also includes an interface 254 which allows for
data input through the keyboard 250 or other input device
and/or the directional or pointing device 252 such as a
remote control, pointer, mouse or joystick.

The many features and advantages of the invention are
apparent from the detailed specification. Thus, the appended
claims are intended to cover all such features and advantages
of the invention which fall within the true spirits and scope
of the invention. Further, since numerous modifications and
variations will readily occur to those skilled in the art, it is
not desired to limit the invention to the exact construction
and operation illustrated and described. Accordingly, all
appropriate modifications and equivalents may be included
within the scope of the invention.

The invention claimed is:

1. A process for the development of scalable, high-
performance materials, comprising a computer-assisted
knowledge cycle that uses at least one of (i) input from
existing experimental data; (ii) correlations generated from
at least one of experimental, theoretical, and/or modeling
findings; and (iii) theoretical and modeling investigations to
generate working hypotheses and suggested steps for at least
one of experimental investigations and theoretical investi-
gations to guide the search for better materials.

2. The process of claim 1 in which the knowledge cycle
further comprises the use of kinetic modeling to guide
catalyst development.

3. The process of claim 1 in which the knowledge cycle
further comprises the use of machine learning methods to
guide catalyst development.

4. The process of claim 1 in which the knowledge cycle
further comprises using kinetic Monte-Carlo simulation to
screen catalytic surfaces for catalytic performance.

5. The process of claim 1 in which the knowledge cycle
further comprises:

specifying a reactant set, the reactant set comprising a

plurality of chemical substances, each of which may
engage in a chemical reaction with one or more other
substances in the reactant set;

specifying a plurality of possible products that may result

from the reaction of two or more of the substances
included in the reactant set;

identifying a reaction mechanism set, the reaction mecha-

nism set comprising a plurality of reaction
mechanisms, wherein each reaction mechanism com-
prises a combination of two or more elementary steps
representing the chemical process;

selecting a plurality of catalytic materials, each catalytic

material being associated with at least one of the
reaction mechanisms in the reaction mechanism set,
each catalytic material being further associated with
experimental data;

associating a kinetic constant value with each elementary

step of each reaction mechanism;

generating a kinetic model associated with each reaction

mechanism and each catalytic material; and
screening, via a processing device, the reaction mecha-
nism set by applying a goodness of fit test to the
experimental data associated with each catalyst, elimi-
nating the reaction mechanisms having a worst fit, and
grouping the remaining reaction mechanisms associ-
ated with each catalytic material to provide a first
reaction mechanism subset for each catalytic material.
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6. The process of claim 5, further comprising the steps of:

selecting a performance variable; and

for the reaction mechanisms contained in the first reaction

mechanism subset, identifying one or more associated
kinetic parameters to which the performance variable is
most sensitive.
7. The process of claim 5, further comprising the steps of:
calculating, using a processing device, a modeled kinetic
constant for a plurality of the elementary steps associ-
ated with a plurality of the reaction mechanisms;

screening, via the processing device, the first reaction
mechanism subset by eliminating the reaction mecha-
nisms having associated kinetic constants that least
closely relate to their corresponding modeled kinetic
constants; and

associating the remaining reaction mechanisms not elimi-

nated in the second screening step with a second
reaction mechanism subset.

8. The process of claim 7, wherein the calculating step
comprises using molecular modeling investigation to calcu-
late the modeled kinetic constant.

9. The process of claim 7, further comprising the steps of:

selecting a performance variable; and

for the reaction mechanisms contained in the second

reaction mechanism subset, identifying one or more
associated kinetic parameters to which the performance
variable is most sensitive.

10. The process of claim 1 in which the knowledge cycle
further comprises:

selecting a data set for a set of materials, the data set

comprising one or more dependent performance vari-
ables for a chemical process and independent variables
including, but not limited to, calculated or measured
properties of the materials or preparation parameters
relating to the materials;

building a model that correlates the dependent perfor-

mance variables with one or more of the independent
variables;

identifying one or more of the independent variables

having values that yield improved values of the depen-
dent performance variables based on the results of the
model built in the building step;

generating a next step for one of experimental and theo-

retical investigations aimed at measuring or calculating
the dependent variable associated with the improved
values of the independent variables; and

identifying from one of experimental and theoretical

investigations one or more new materials that are
associated with the values of the one or more indepen-
dent variables that yield improved values of the depen-
dent variables.

11. The process of claim 10 wherein the step of building
a model comprises the use of recursive partitioning.

12. The process of claim 10 in which one or more
dependent performance variables or one or more indepen-
dent variables are kinetic parameters that have been asso-
ciated with reaction mechanisms in a reaction mechanism
set.

13. The process of claim 10, further comprising the steps
of:

applying a Monte Carlo kinetic simulation to calculate at

least one modeled performance parameter for each
material included in the material set; and

selecting at least one materials class based on the results

of the Monte Carlo simulation.
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14. The process of claim 10 further comprising the steps
of:

selecting a reaction mechanism from a reaction mecha-
nism set, wherein each reaction mechanism in the set
comprises a combination of two or more elementary
steps in a chemical process;

applying a Monte Carlo kinetic simulation to calculate at
least one modeled performance parameter for each
material identified in the identifying step, wherein the
simulation is associated with the selected reaction
mechanism; and

selecting at least one materials class based on the results

of the Monte Carlo simulation.

15. The process of claim 14 wherein each reaction mecha-
nism in the reaction mechanism set has been screened, using
a goodness of fit test, to eliminate reaction mechanisms for
which experimental data associated with reaction mecha-
nism catalysts has been determined to have a poor fit.

16. The process of claim 15 wherein each reaction mecha-
nism in the reaction mechanism set has been further
screened to eliminate reaction mechanisms having associ-
ated kinetic catalysts that least closely relate to correspond-
ing modeled kinetic constants.
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17. The process of claim 7, further comprising the steps
of:

selecting a performance variable; and

for the reaction mechanisms contained in the first reaction
mechanism subset, identifying one or more associated
kinetic parameters to which the performance variable is
most sensitive.

18. A computer-assisted method for the development of

scalable, high-performance materials, comprising:

receiving, by a computer, at least one of the following:
input from existing experimental data,
correlations generated from at least one of

experimental, theoretical, and/or modeling findings,
and

theoretical and modeling investigations;

generating, using the computer, one or more working
hypotheses and suggested steps for at least one of
experimental investigations and theoretical investiga-
tions; and

identifying one or more materials for use in a chemical
process.



