Fischer-Tropsch synthesis catalysts based on Fe oxide precursors modified by Cu and K: structure and site requirements

Senzi Li^a, George D. Meitzner^b, and Enrique Iglesia^a

^aDepartment of Chemical Engineering, University of California, Berkeley, CA 94720

^bEdge Analytical, Inc., 2126 Allen Blvd., Middleton, WI 53562

The reduction, carburization, and catalytic properties of Fischer-Tropsch synthesis (FTS) catalysts based on Fe-Cu were examined using kinetic and spectroscopic methods at reaction conditions. Fe₂O₃ precursors reduce to Fe₃O₄ and then carburize to form a mixture of Fe_{2.5}C and Fe₃C in both CO and H/CO mixtures at 540-720 K. Oxygen removal initially occurs without FTS reaction as Fe₂O₃ forms inactive O-deficient Fe₂O₃ species during initial contact with synthesis gas at 523 K. FTS reactions start to occur as Fe₃O₄ forms and then rapidly converts to FeC_x. The onset of FTS activity requires only the conversion of surface layers to an active structure, which consists of FeC_x with steady-state surface coverages of oxygen and carbon vacancies formed in CO dissociation and O-removal steps during FTS. The gradual conversion of bulk Fe₃O₄ to FeC_x influences FTS rates and selectivity weakly, suggesting that the catalytic properties of these surface layers are largely independent of the presence of an oxide or carbide core. The presence of Cu and K increases the rate and the extent of Fe₃O₄ carburization during reaction and the Fischer-Tropsch synthesis rates, apparently by decreasing the size of the carbide crystallites formed during reaction.

1. INTRODUCTION

Fe, FeC_x , FeO_y can co-exist when Fe oxides are activated in reactive gases or used in Fischer-Tropsch synthesis (FTS) reactions [1]. The relative abundance of these phases depends on reaction conditions and it can influence catalytic properties. The presence and role of these phases remain controversial [2], because the detection of active sites is usually indirect and the results tend to provide infrequent snapshots of the catalyst structures as a function of time on stream, instead of a continuous record of structural transformations during FTS reactions. The present study addresses the characterization of the structure and stoichiometry of active phases formed from Fe oxide precursors during FTS using a combination of isothermal transient kinetic methods, *in situ* X-ray absorption spectroscopy, and steady-state FTS rate and selectivity measurements.

2. EXPERIMENTAL

Fe oxide precursors were prepared by precipitation of an aqueous solution of $Fe(NO_3)_3$ (Aldrich, 99.99%, 3.0 M) or a mixture of $Fe(NO_3)_3$ and $Zn(NO_3)_2$ (Aldrich, 99.99%, 1.4 M) with $(NH_4)_2CO_3$ (Aldrich, 99.9%, 1 M) at 353 K and at constant pH of 7.0. The precipitates

were treated in dry air at 393 K for 12 h and then at 643 K for 4 h. X-ray diffraction measurements confirmed that the crystal structure of resulting Fe oxides was Fe_2O_3 . Fe oxide powders were impregnated with an aqueous solution of $Cu(NO_3)_2$ (Aldrich, 99.99%, Cu/Fe=0.01) and/or K_2CO_3 (Aldrich, 99.99%, K/Fe=0.02) using incipient wetness methods. The dried material was treated in air at 673 K for 4 h. Detailed descriptions of these synthesis procedures are reported elsewhere [3]. The Cu-promoted oxide hereafter is designated as Fe_2O_3 -Cu, and after K addition, as Fe_2O_3 -K-Cu.

A rapid switch transient method was used to determine the extent and rate of reduction and carburization of Fe oxide precursors and the rate of FTS reactions during the initial stages of the catalytic reaction. Samples (0.2g) were pretreated in He (100 cm³/min) up to 573 K and then cooled to 523 K. A H₂/CO/Ar stream (40/20/40 %, 1 atm, Matheson, 99.99%) was then introduced and the concentrations of gas products in the effluent stream were monitored using on-line mass spectrometry. Here, CH₄ formation rate was used as a surrogate measure of hydrocarbon formation rates because it can be measured accurately and changes with time on stream in parallel with the formation rates of other hydrocarbons. A pre-reduced Fe₃O₄-Cu sample was prepared by treating Fe₂O₃-Cu (0.2g, Cu/Fe=0.01) in 20 % H₂/Ar (100 cm³/min) while increasing the temperature to 533 K at 0.167 Ks⁻¹. The Fe₃O₄ sample was then cooled to 523 K in He (100 cm³/min) before exposing it to the H₂/CO/Ar stream. A FeC_x-Cu sample (Fe_{2.5}C and Fe₃C mixture) was also prepared by treating Fe₂O₃-Cu (0.2g, Cu/Fe=0.01) in 20 % K at 0.083 Ks⁻¹. The presence of Fe₃O₄ and FeC_x phases was confirmed by X-ray diffraction and by detailed oxygen removal and carbon introduction measurements [4].

X-ray absorption spectra were obtained at the Stanford Synchrotron Radiation Laboratory using a wiggler side-station (beamline 4-1). Fe K-edge X-ray absorption spectra were acquired during FTS in synthesis gas using an *in situ* X-ray absorption cell [5]. A precursor oxide sample (8 mg; diluted to 10 wt.% Fe with graphite) was placed within a thin quartz capillary. Synthesis gas (H₂/CO=2) was passed through the sample at 523 K and a space velocity of 30,000 h⁻¹. The spectra were recorded *in situ* as the structure of the catalysts developed with time on stream after exposure to synthesis gas (~14 h). In order to capture the phase evolution of the Fe oxide precursors during initial contact with synthesis gas, XAS spectra were also measured after rapidly cooling samples to room temperature while flowing He through the powder bed. The relative concentrations of Fe carbides and Fe oxides in the samples were obtained using principal component analysis and a linear combination of X-ray absorption near-edge spectra (XANES). The spectra of reference materials, Fe₂O₃, Fe₃O₄, and FeC_x, were fitted to the catalyst XANES in the region between 7.090 and 7.240 keV.

3. RESULTS AND DISCUSSION

Figure 1 shows the temperature-programmed reduction profile of Fe_2O_3 -Cu in H₂ and its reduction/carburization in CO. The amount of oxygen removed as a function of temperature indicates that the reduction of Fe_2O_3 -Cu in H₂ proceeds in two steps: Fe_2O_3 reduced to Fe_3O_4 (<600 K); then, Fe_3O_4 reduced to Fe at 600-950 K. The oxygen removal and carbon

introduction rates as a function of temperature for the Fe₂O₃-Cu sample in CO suggest that reduction/carburization occurred also in two sequential steps, except that reduction started at ~80 K higher temperature in CO than in H₂. It appears that CuO reduced in H₂ at 470 K to form H₂ dissociation sites that increase Fe₂O₃ reduction rates. Carburization did not start until 550 K, as Fe₃O₄ started to reduce. The formation of Fe carbides occurred concurrently with the reduction of Fe₃O₄. X-ray diffraction of samples treated in CO at 550 K and 750 K confirmed that reduction and carburization of Fe oxides in CO proceeds via two sequential steps: Fe₂O₃ reduces to Fe₃O₄, Fe₃O₄ reduces and carburizes to form a mixture of Fe_{2.5}C and Fe₃C.

Mass spectrometric analysis of initial products formed on Fe₂O₃-Cu, Fe₃O₄-Cu and FeC_x-Cu after exposure to synthesis gas at 523 K was used in order to measure the rate of initial reduction and carburization of Fe oxides as well as the FTS rates. Figure 2 shows the oxygen removal by H₂ and CO forming H₂O and CO₂ and the CH₄ formation rates during the initial reduction/carburization in H₂/CO and during subsequent steady-state FTS on Fe₂O₃-Cu at 523 K. During the initial 60 s, oxygen was removed from Fe₂O₃-Cu; reduction occurred without the concurrent formation of CH₄ or other hydrocarbons. The oxygen removed under the first sharp peak arises from the reduction of CuO to Cu. The rest of the oxygen removed during the induction period corresponds to an average stoichiometry of Fe₂O₂. This indicates that O-deficient Fe₂O₃ is not active for FTS reaction. CH₄ formation rates started to increase after this induction period and reached steady-state values after removal of only about 1-2 equivalent layers of O-atoms (assuming that a monolayer consists of 10¹⁹ O-atom/m²) in Fe₂O₃, suggesting the facile formation of active sites, which rapidly reached their steady-state site density.

Fig. 1. Temperature-programmed reaction of Fe_2O_3 -Cu in H_2 and CO (0.2 g sample; Cu/Fe=0.01, 0.167 Ks⁻¹; 20 % H₂ or CO in Ar; 100 cm³/min total flow rate).

Fig. 2. Mass spectrometric product transients on Fe_2O_3 -Cu with time on stream after exposure to synthesis gas at 523 K (0.2 g sample; Cu/Fe=0.01; H₂/CO=2, 100 cm³/min total flow rate).

Figure 3 shows the results of linear combinations of Fe K-edge XANES for reference compounds (Fe₂O₃, Fe₃O₄ and FeC_x) as a description of the spectra measured for Fe₂O₃-Cu after exposure to synthesis gas at 523 K for various times. Fe₂O₃ rapidly disappeared during the induction period and Fe₃O₄ and Fe carbides formed concurrently; the extent of reduction and carburization increased with time on stream. Fe₃O₄ alone was never detected during FTS reactions, indicating its facile conversion to Fe carbides. Fe metal was not detected at any time during exposure to synthesis gas at 523 K.

The structural changes from Fe_2O_3 to Fe_3O_4 , the subsequent facile conversion of Fe_3O_4 to Fe carbides, and the concurrent increase in FTS rates suggest that FTS reactions first occur as Fe_3O_4 is formed and then rapidly converted to FeC_x . The extent of carburization continued to increase with time on stream, without a detectable increase in FTS reaction rates, indicating that only the incipient conversion of Fe_3O_4 to FeC_x was required for FTS reactions to occur at steady-state rates. In effect, only surface layers of Fe carbides appear to be required to form FTS active sites, irrespective of the structure and composition of the bulk phase. The catalytic properties of Fe carbides appear not to be influenced by a remaining Fe oxide core or by its ultimate conversion to FeC_x .

Fig. 3. Fe K-edge X-ray absorption measurements of the phase evolution of Fe_2O_3 -Cu oxide with time on stream after exposure to synthesis gas at 523 K (1 mg, precipitated Fe_2O_3 , Cu/Fe=0.01, H/CO=2, 30000 h⁻¹).

Fig. 4. Mass spectrometric product transients on (a) Fe_3O_4 -Cu and (b) Fe_xC -Cu with time on stream after exposure to synthesis gas at 523 K (0.2 g sample; Cu/Fe=0.01; H₂/CO=2, 100 cm³/min total flow rate).

Figure 4 shows the initial CH₄ transients on pre-carburized Fe carbides (FeC_x-Cu) and prereduced Fe oxides (Fe₃O₄-Cu) at 523 K during exposure to synthesis gas. Steady-state reaction rates were reached on both Fe₃O₄-Cu and FeC_x-Cu immediately upon contact with H₂/CO mixtures and without the induction period observed on Fe₂O₃ precursors. FTS rates remained constant even as the gradual removal of oxygen and the introduction of carbon continued to occur on Fe_3O_4 -Cu. This indicates that the formation of an active surface occurred only after a few FTS turnovers, irrespective of the initial presence of Fe_3O_4 or FeC_x . This active surface is likely to consist of Fe carbides with a steady-state mixture of surface vacancies and adsorbed C and O atoms formed in the CO dissociation and O-removal steps required to complete a FTS catalytic turnover. The relative concentrations of these species are rapidly established by FTS elementary steps; they depend on the redox properties of the gas phase, on the reaction temperature, and on the presence of any surface promoters that modify the redox properties of the surface.

Figure 5 shows steady-state hydrocarbon formation rates as a function of CO conversion on Fe_2O_3 -Zn-Cu and Fe_2O_3 -Zn-K-Cu (508 K, 21.4 bar, $H_2/CO=2$). ZnO species in these samples act as a structural promoter to increase FTS rates by inhibiting sintering of the oxide precursors during synthesis. The steady-state reaction data showed that the presence of Cu and K significantly increased FTS rates, suggesting that K and Cu increased the density of active sites formed during activation in H_2/CO mixtures.

Fig. 5. Hydrocarbon formation rates as a function of CO conversion at steadystate FTS conditions (0.4 g sample; Zn/Fe=0.01, K/Fe=0.02, Cu/Fe=0.01, H₂/CO=2; 508 K, 21.4 atm).

Fig. 6. *In situ* linear combination fits to Fe K-edge XANES of Fe₂O₃-K-Cu and Fe₂O₃-Cu as a function of time in synthesis gas at 523 K (1 mg sample; Cu/Fe=0.01, K/Fe=0.02; H₂/CO=2, 30000 h^{-1}).

The presence of Cu and of K increased the rate and the extent of Fe_3O_4 carburization during FTS reactions. The correlation between the rate and extent of carburization of these catalysts and their FTS rates appears to reflect the fact that K and Cu decrease the size of the carbide crystallites formed during reaction and thus increase the number of active sites. Our surface area and CO chemisorption measurements on the samples after FTS reactions confirmed that

the surface areas and the amount of CO chemisorbed on the K- and Cu-containing samples are higher than on the samples without K and Cu. This supporting evidence will be described in a separate paper [6]. It appears that the smaller size of the crystallites formed in K- and Cucontaining samples account for their more complete carburization during FTS. It is not, however, their more complete carburization, but their higher surface area that accounts for higher FTS rates obtained on K and Cu promoted catalysts.

4. CONCLUSIONS

Porous Fe_2O_3 precursors sequentially reduce to Fe_3O_4 and then carburize to a mixture of Fe carbides ($Fe_{2.5}C$ and Fe_3C) in CO or in synthesis gas. The incipient conversion from Fe_3O_4 to Fe carbides occurs rapidly, at least in near surface layers, at FTS conditions. Oxygen removal initially occurs without FTS reaction as Fe_2O_3 forms inactive O-deficient Fe_2O_3 species during contact with synthesis gas. FTS reactions occur as Fe_3O_4 is formed and rapidly converted to FeC_x . FTS reactions require only the incipient conversion of surface layers to an active structure, which consists of FeC_x with a steady-state surface coverage of carbon and oxygen vacancies. The catalytic properties of Fe catalysts are not influenced by the gradual conversion of bulk Fe_3O_4 to FeC_x and its ultimate carburization at FTS conditions. The presence of Cu and of K increases the rates and extent of Fe_3O_4 carburization during reaction and the Fischer-Tropsch synthesis rates, apparently by providing multiple nucleation sites that lead to higher surface area FeC_x crystallites during reaction.

5. REFERENCES

1. R. B. Anderson, Catalysis; P. H. Emmett eds.; Van Nostrand-Reinhold: New York, Vol. 4, (1956) 29.

2. M. E. Dry, Catalysis-Science and Technology; J. R. Anderson, and M. Boudart eds.; Springer Verlag: New York, 1, (1981) 196.

3. S. L. Soled, E. Iglesia, S. Miseo, B. A. DeRites, R. A. Fiato, Topics in Catalysis, 2, (1995) 193.

- 4. S. Li, G. D. Meitzner, E. Iglesia, to be submitted to J. Catal.
- 5. D. G. Barton, Ph. D dissertation, University of California, Berkeley, 1998.
- 6. S. Li, G. D. Meitzner, E. Iglesia, to be submitted to J. Phys. Chem.