Structural requirements and reaction pathways in methane activation and chemical conversion catalyzed by rhodium

Junmei Wei and Enrique Iglesia *

Department of Chemical Engineering, University of California at Berkeley, Berkeley, CA 94720, USA

Received 4 July 2003; revised 26 August 2003; accepted 1 September 2003

Available online 12 May 2004

Abstract

Kinetic and isotopic tracer methods led to a simple and unifying mechanistic proposal for reactions of CH₄ with CO₂ and H₂O, for its decomposition on Rh clusters, and for water–gas shift reactions. Kinetic rates for forward reactions were measured by correcting net rates for approach to equilibrium and by eliminating transport artifacts. These rates were proportional to CH₄ pressure (5–450 kPa) and independent of CO₂ or H₂O pressures (5–450 kPa) on all supported Rh catalysts; the resulting first-order rate constants were identical for H₂O and CO₂ reforming and for CH₄ decomposition. Kinetic isotope effects (kCH₄/kCD₄ = 1.54–1.60) were also independent of the concentration or identity of the co-reactant, consistent with the sole kinetic relevance of C–H bond activation steps. These data indicate that co-reactant activation and its kinetic coupling with CH₄ activation via scavenging of chemisorbed carbon intermediates are fast steps and lead to Rh surfaces essentially uncovered by reactive intermediates during H₂O and CO₂ reforming. CO oxidation rates before and after reforming reactions showed that Rh surfaces remain uncovered by unreactive species during reforming catalysis under conditions relevant to industrial practice. CH₄ conversion rates for CH₄/CD₄/CO₂ reactant mixtures are much faster than CH₄ activation, indicating that C–H bond activation elementary steps are irreversible. CH₄/CO₂/D₂ reactant mixtures led to binomial isotopomer distributions in dihydrogen and water at all reactant conversions. Their D contents were identical and corresponded to equilibration between all H atoms in reacted CH₄ and all D₂ in the inlet stream. Thus, recombinative desorption steps of H atoms and OH groups to form H₂ or H₂O are quasi-equilibrated during CH₄ reforming. ¹²CH₄/¹³CO₂/¹³CO mixtures led to identical ¹³C contents in CO and CO₂, as expected from quasi-equilibrated CO₂ activation steps. The quasi-equilibrated nature of all these steps requires that water–gas shift reactions also be at equilibrium during CH₄ reforming.

Keywords: CH₄ activation; CH₄ reforming; Rh catalysts; Isotopic tracer; Kinetic isotope effects; Cluster size effects

1. Introduction

CH₄ reforming with CO₂ or H₂O provides an effective route to synthesis gas streams useful as precursors to fuels and petrochemicals. Several hundred studies have documented scientific and technological progress over the past few years, including reviews by Edwards and Maitra [1], Wang and Lu [2], and Bradford and Vannice [3]. After the initial report by Fischer and Tropsch [4] that group VIII metals (Ni, Ru, Rh, Pt, Pd, Ir) catalyze CO₂–CH₄ reactions, active debate continues about the relative intrinsic reactivities of different metals, while Rh is generally considered to be one of the most stable group VIII metals [5–10]. Rh/Al₂O₃ [6–18], Rh/ZrO₂ [11,17], Rh/SiO₂ [11,13,17,19–21], Rh/MgO [9,13,14,17,22], Rh/La₂O₃ [13,14,17,21], Rh/TiO₂ [13,14,17,23,24], Rh/NaY [25], and Rh/ZSM-5 [26] have also been shown to catalyze CO₂ and H₂O reforming of CH₄.

Rigorous and unequivocal assessments of relevant elementary steps and of dispersion and support effects on turnover rates remain unavailable, and many contradictory proposals and findings are still unresolved, even after significant research efforts. A qualitative theoretical analysis based...
on bond-order bond-energy conservation led to the suggestion that both CH$_4$ and CO$_2$ dissociation steps are kinetically relevant on Rh(111) [27]. Rostrup-Nielsen and Bak Hansen [5] reported that H$_2$O reforming rates are much faster than reforming CO$_2$ rates and that the latter depended on rate-determining CO$_2$ activation steps on Rh/Al$_2$O$_3$. Studies of the stoichiometric activation of CO$_2$ and CH$_4$ on Rh/Al$_2$O$_3$ led to the conclusion that both CH$_4$ and CO$_2$ limit overall rates, and first-order rate dependencies on CO$_2$ and CH$_4$ were proposed [28]. Using phenomenological power law kinetics of the form

$$r = k \rho_{CH_4}^a \rho_{CO_2}^b,$$ (1)

Bhat and Sachtler [25] reported that the CO$_2$ reforming of CH$_4$ is first-order in CH$_4$ and zero-order in CO$_2$ on Rh/NaY catalyst, indicating that C–H bond activation is the kinetically relevant step in CH$_4$ reforming reactions and hydrogen desorption to form H$_2$ and that CO$_2$ reactions with CH$_4$-derived chemisorbed species to form CO are fast and kinetically invisible, in agreement with our recent findings on Ru-based catalysts [29].

Many studies on model metal surfaces have suggested that C–H bond activation is the kinetically relevant step in CH$_4$ conversion to H$_2$–CO mixtures [30, and references therein]. C–H bond dissociation occurs faster on step and kink sites than on terrace sites, apparently as a result of the greater coordinative unsaturation of surface metal atoms on rough surfaces [31–33]. When this step limits overall chemical conversion rates, its strong structure sensitivity, by the definition of Boudart [34], is expected to cause significant effects of metal dispersion and cluster size on catalytic turnover rates. Computational studies using density functional theory suggested that steps and kinks decrease CH$_4$ dissociation barriers [33]. These barriers are estimated to be about 30 kJ/mol lower on steps and kinks present on Rh(211) surfaces than on close-packed terrace planes on Rh(111) [33]. Wang and Ruckenstein [17] reported that CO$_2$ reforming is structure-sensitive on Rh/Al$_2$O$_3$; the turnover rates depend significantly on Rh crystallite size (1–7 nm) and the specific activity increased with increasing Rh dispersion on Rh/Al$_2$O$_3$ catalysts, but most data were measured near equilibrium without appropriate correction. Zhang et al. [13] have reported similar dispersion effects for CO$_2$ reforming of CH$_4$ on Rh/Al$_2$O$_3$. The effects of Rh dispersion on CH$_4$–H$_2$O reactions have not been reported.

Supports are often claimed to influence CH$_4$ reforming rates on Rh crystallites, but their concomitant effects on Rh dispersion or on ubiquitous transport artifacts are seldom rigorously excluded, and significant discrepancies exist among these previous reports. Wang and Ruckenstein [17] reported that CO$_2$ reforming rates on Rh-based catalysts depend on the reduction properties of the supports. CH$_4$ conversion was higher on Rh supported on unreducible oxides (Al$_2$O$_3$, MgO, Y$_2$O$_3$, La$_2$O$_3$, and SiO$_2$) than on reducible oxides (ZrO$_2$, CeO$_2$, and TiO$_2$), but no parallel measurements of Rh dispersion were reported. Even within the less reducible supports, CH$_4$ conversions were sensitive to the identity of the support (Rh/SiO$_2$ ≈ Rh/Al$_2$O$_3$ ≈ Rh/MgO > Rh/Y$_2$O$_3$ > Rh/La$_2$O$_3$). Bhat and Sachtler [25] also found that CH$_4$ conversions during CO$_2$ reforming were sensitive to support effects (Rh/Al$_2$O$_3$ > Rh/SiO$_2$ > Rh/NaZSM-5). Neither study reported Rh dispersions or turnover rates. Thus, the observed support effects may simply arise from secondary effects of supports on Rh cluster size or on transport artifacts. In contrast, Mark and Maier [9] reported that the support (ZrO$_2$, Al$_2$O$_3$, TiO$_2$, SiO$_2$) did not influence CO$_2$ reforming turnover rates on Rh crystallites.

Here, we probe the identity and reversibility of elementary steps required for H$_2$O and CO$_2$ reforming of CH$_4$ on Rh of various dispersions on different supports (Al$_2$O$_3$ and ZrO$_2$). In doing so, we also establish a rigorous kinetic and mechanistic equivalence among water-gas shift, CH$_4$ decomposition, and CO$_2$ and H$_2$O reforming reactions. Kinetic and isotopic exchange measurement experiments confirmed the proposed catalytic sequence and the exclusive kinetic relevance of C–H bond activation steps and the kinetic irrelevance of co-reactant activation pathways on clean Rh surfaces. Transport artifacts were ruled out using bed and pellet dilution strategies, and measured rates were rigorously corrected for the distance from equilibrium in reforming reactions and for the number of exposed Rh surface atoms. Similar rate expressions and kinetic rate constants were measured for H$_2$O and CO$_2$ reforming and for CH$_4$ decomposition. Rate constants increased markedly with increasing Rh dispersion, but they did not depend on the identity of the support. These conclusions resemble those reached in parallel studies of CH$_4$ reforming and decomposition reactions on supported Ru, Ni, Ir, Pt, and Pd catalysts, the evidence for which will be presented elsewhere [29,35].

2. Experimental methods

2.1. Catalyst synthesis and characterization

Rh/Al$_2$O$_3$ and Rh/ZrO$_2$ catalysts with varying Rh content (0.1, 0.2, 0.4, 0.8, 1.6 wt%) were prepared by incipient wetness impregnation of Al$_2$O$_3$ or ZrO$_2$ with an aqueous solution of Rh(NH$_4$)$_3$Cl$_6$ (Alfa, CAS 10294-41-4, 99.99%) and dried at 393 K in ambient air for 12 h. These samples were then treated in flowing dry air (Airgas, UHP, 1.2 cm3/g) by increasing the temperature to 923 K at 0.167 K/s and holding at 923 K for 5 h. A portion of each of the Rh/Al$_2$O$_3$ samples was treated in flowing dry air (Airgas, UHP, 1.2 cm3/g) at higher temperatures by increasing the temperature to 1123 K at 0.167 K/s and holding at 923 K for 5 h. A portion of each of the Rh/Al$_2$O$_3$ samples was treated in flowing dry air (Airgas, UHP, 1.2 cm3/g) at higher temperatures by increasing the temperature to 1123 K at 0.167 K/s and holding at 1123 K for 5 h to achieve lower Rh dispersions. All samples were ultimately treated in pure H$_2$ (Airgas, UHP, 50 cm3/g) by heating to 973 K at 0.167 K/s and holding at 973 K for 3 h before catalytic and chemisorption measurements. Al$_2$O$_3$ (160 m2/g) was prepared by treating Al(OH)$_3$ (Aldrich, 21645-51-2) in flowing dry air (Airgas, UHP, 1.2 cm3/g).
while increasing the temperature to 923 K at 0.167 K s\(^{-1}\) and holding at 923 K for 5 h; this procedure led to y-Al\(_2\)O\(_3\) [36]. ZrO\(_2\) (45 m\(^2\)/g) was prepared using procedures reported elsewhere [37], which led to the predominant formation of the monoclinic phase of ZrO\(_2\) [37].

Rh dispersion was measured from volumetric H\(_2\) chemisorption uptakes at 313 K using a Quantasorb chemisorption analyzer (Quantachrome Corp.). Samples were reduced in H\(_2\) at 973 K for 2 h and then evacuated at 973 K for 0.5 h before chemisorption measurements. After cooling to 313 K, a H\(_2\) chemisorption isotherm was measured at 3–50 kPa H\(_2\). A backscorpton isotherm was also measured after samples were evaporated at 313 K for 0.5 h. Both isotherms were extrapolated to zero H\(_2\) pressure and their difference was used to measure strongly chemisorbed hydrogen uptakes, from which Rh dispersions were obtained by assuming a 1:1 stoichiometry between adsorbed H atoms and Rh surface atoms [38].

2.2. Catalytic CO\(_2\) and H\(_2\)O reforming and stoichiometric decomposition of CH\(_4\) on Rh crystallites

Catalytic rates were measured by placing samples (5 mg, 250–425 µm) in a quartz or stainless steel tube (8-mm inner diameter) equipped with a type K thermocouple enclosed within a sheath in contact with the catalyst bed. Samples were diluted with ground acid-washed quartz powder (500 mg, 250–425 µm) to avoid temperature gradients. Transport artifacts were ruled out using pellet and bed dilution tests, which led to undetectable variations in CH\(_4\) reaction rates or selectivities. Kinetic effects of CH\(_4\), H\(_2\)O, and CO\(_2\) pressures on CH\(_4\) reaction rates were measured at 823–1023 K and 100–1500 kPa total pressures over a wide range of reactant concentrations. Reactant mixtures were prepared using certified mixtures of 50% CH\(_4\)/Ar (Matheson, UHP) and 50% CO\(_2\)/Ar (Matheson, UHP) with H\(_2\) (Airgas, UHP) as balance. Deionized H\(_2\)O was introduced using a syringe pump (Cole-Parmer, 74900 series) for H\(_2\)O reforming reactions. All transfer lines were kept above 373 K after the point of H\(_2\)O introduction to avoid condensation. Reactant and product concentrations were measured with a Hewlett-Packard 6890 gas chromatograph using a Carboxen 1000 packed column (3.2 mm × 2 m) and a thermal conductivity detector.

Rh/Al\(_2\)O\(_3\) (0.4 or 1.6 wt%, 20 mg, treated at 1123 K in air before reduction) diluted with 500 mg quartz powder was used in CH\(_4\) and CD\(_4\) decomposition kinetic measurements at 873 K. Chemical and isotopic compositions were measured by online mass spectrometry (Leybold Inficon, Transpector Series). Reactant mixtures with 20% CH\(_4\)/Ar or 20% CD\(_4\)/Ar were prepared using 50% CH\(_4\)/Ar (Matheson, certified mixture) or CD\(_4\) (Isotec, chemical purity > 99.0%) and Ar (Airgas, UHP). Ar was used as an inert internal standard to measure CH\(_4\) conversion. Initial CH\(_4\) decomposition rates were used to estimate rate constants for CH\(_4\) decomposition based on the observed linear dependence of rates on CH\(_4\) concentration.

2.3. Isotopic exchange and tracer measurements

Isotopic tracer studies were carried out on 0.1 wt% Rh/Al\(_2\)O\(_3\) (treated in air at 1123 K before reduction) using a transient flow apparatus with short hydrodynamic delays (< 5 s). Chemical and isotopic compositions were measured by online mass spectrometry (Leybold Inficon, Transpector Series). CD\(_4\) (Isotec, chemical purity > 99.0%), D\(_2\)O (Isotec, chemical purity > 99.0%), and 5% D\(_2\)/Ar and 13CO (Isotec, chemical purity > 99.0%) were used as reactants without further purification. Intensities at 15 and 17–20 amu were used to measure methane isotopomer concentrations. CH\(_4\) and CD\(_4\) standard fragmentation patterns were measured and those for CHD\(_3\), CH\(_2\)D\(_2\), and CH\(_3\)D were calculated using reported methods [39]. Intensities at 17, 19, and 20 amu were used to determine water deutero isotopomers and those at 28, 29, 44, and 45 amu to measure 12CO, 13CO, 12CO\(_2\), and 13CO\(_2\) concentrations, respectively. Detailed experimental conditions are shown with the corresponding data in the results presented below.

2.4. Carbon formation measurement

Carbon formation rates were measured during reforming reactions at 873 K using a tapered-element quartz oscillating microbalance (Rupprecht & Patashnick, TEOM Series 1500 pma kinetic analyzer). Catalyst treatment procedures and reaction conditions were identical to those used in kinetic measurements.

2.5. CO oxidation rates

Structure-insensitive CO oxidation reactions were used to detect any changes in the number of exposed Rh atoms during CH\(_4\) reforming. Rh/ZrO\(_2\) (0.8 wt%, 10 mg; 500 mg quartz powder) was used to measure CO oxidation rates at 363 K and 0.19 kPa CO and 0.19 kPa O\(_2\) pressures before and after CH\(_4\) reforming reactions. Reactant and product concentrations were measured by gas chromatography using the protocols described above for CH\(_4\) reactions. Mixtures of 25% O\(_2\)/He (Matheson, certified mixture) and 81.5% CO/N\(_2\) (Matheson, certified mixture) were used as reactants.

3. Results and discussion

3.1. Kinetic dependence of forward CH\(_4\) reaction rate on partial pressures of reactants and products

The kinetic dependencies of CH\(_4\) reforming rates on CH\(_4\), CO\(_2\), and H\(_2\)O concentrations were similar on Rh/Al\(_2\)O\(_3\) and Rh/ZrO\(_2\) catalysts with different Rh contents. We report here detailed kinetic data only on a 0.4 wt% Rh/Al\(_2\)O\(_3\) sample treated at 1123 K. Rates were measured under reaction con-
Fig. 1. Effect of CH$_4$ (a) and CO$_2$ (b) partial pressure on forward CH$_4$ reaction rate for CO$_2$ reforming of CH$_4$ on 0.4 wt% Rh/Al$_2$O$_3$ treated at 1123 K (37.2% Rh dispersion) (5 mg catalyst, 873 K, total flow rate 100 cm3/min, balance He).

ditions that led to stable rates without detectable carbon formation. The absence of filamentous carbon was confirmed by lack of detectable changes in the mass of samples during parallel microbalance measurements and by the lack of visual evidence for carbon filaments in transmission electron micrographs of samples used in catalytic reactions for extended periods of time.

Fig. 1 shows the effects of CH$_4$ and CO$_2$ pressures on forward CH$_4$ turnover rate (r_f) at 873 K and 100–1500 kPa total pressures; these turnover rates are normalized by the number of exposed surface Rh atoms measured by H$_2$ chemisorption uptakes before catalytic measurements. Measured net rates were corrected for the approach to equilibrium for each CH$_4$ reaction in order to obtain rigorous forward reaction rates. Specifically, measured rates were corrected for approach to equilibrium (η) from thermodynamic data [40] and the prevalent pressures of reactants and products using

$$\eta_2 = \frac{[P_{CO}]^2[P_{H_2}]^2}{[P_{CH_4}][P_{H_2O}]} K_{EQ_2}$$

for CH$_4$–CO$_2$ and CH$_4$–H$_2$O reactions, respectively. Here, $[P_j]$ is the average partial pressure of species j (in atm) and K_{EQ_j} are equilibrium constants at a given temperature [40]. Values of η range from 0 to 0.3 for experimental data reported here. Measured net reaction rates (r_n) are used to obtain forward rates (r_f) using [41]

$$r_n = r_f (1 - \eta).$$

This equation accurately describes all observed effects of reactor residence time and conversion on measured reaction rates.

Forward CO$_2$ reforming reaction rates increased linearly with increasing CH$_4$ partial pressures (5–450 kPa) at temperatures between 823 and 1023 K; these rates were not influenced, however, by CO$_2$ partial pressures (5–450 kPa) (Fig. 1). Fig. 2 shows that the addition of CO or H$_2$ to CH$_4$–CO$_2$ and CH$_4$–H$_2$O mixtures did not influence forward rates on 1.6 wt% Rh/Al$_2$O$_3$ (treated at 1123 K, 25.1% Rh dispersion) at 873 K. Forward rates were not influenced by CO or H$_2$ concentrations, whether they were varied by external addition or by changes in residence time and CH$_4$ conversion. Once additional effects of product concentrations on η are

Fig. 2. Effect of H$_2$ (a) and CO (b) partial pressures on forward CH$_4$ reaction rate for CH$_4$ reforming reactions on 1.6 wt% Rh/Al$_2$O$_3$ treated at 1123 K (25.1% Rh dispersion) (873 K, 20 kPa CH$_4$, 20 kPa CO$_2$ or H$_2$O, 100 kPa total pressure, balance He).
Fig. 3. Extent of water–gas shift equilibrium on Rh/Al₂O₃ at different reaction temperatures as a function of space velocity on 0.4 wt%-catalysts treated at 1123 K (37.2% Rh dispersion) (25 kPa CH₄, 25 kPa CO₂, 100 kPa total pressure, \(\eta_{\text{WGS}} = \frac{[P_{\text{CO}}][P_{\text{H₂O}}]}{[P_{\text{H₂}}][P_{\text{CO₂}}]} K_{\text{WGS}} \)).

The absence of co-reactant and product concentration effects indicates that the state of Rh surfaces is unaffected by the rate at which the products of CH₄ activation are removed by kinetic coupling of CH₄ activation steps with those required for co-reactant activation. These data also indicate that co-adsorbed products do not detectably influence the number of surface Rh atoms available for CH₄ activation steps. Castner et al. [42] have shown that H atoms recombine and desorb from Rh(111) surfaces at 423–493 K, while CO desorbs at 498–548 K; thus, chemisorbed hydrogen and CO coverages are expected to be negligible at typical CH₄ reforming temperatures (873–1100 K).

Fig. 3 shows the extent of water–gas shift equilibrium under different reaction conditions on 0.4 wt% Rh/Al₂O₃. Measured concentrations of reactants and products during CH₄ reforming reactions showed that water–gas shift (WGS) reactions are equilibrated during CH₄ reforming on all Rh catalysts at 873–973 K. The more complex rate expressions reported in the literature appear to reflect transport artifacts or nonrigorous corrections for approach to thermodynamic equilibrium [16]. Our simple expression is consistent with CH₄ activation as the sole kinetically relevant elementary step and with fast and kinetically irrelevant reactions of CO₂ with CH₄-derived chemisorbed carbon to form CO; these fast steps maintain Rh surfaces essentially uncovered by adsorbed reactive intermediates during CH₄–CO₂ reactions.

The kinetic irrelevance of carbon removal by co-reactants was confirmed by the CH₄–H₂O reaction rates shown in Fig. 4. These rates are identical to those measured for CH₄–CO₂ mixtures at similar CH₄ partial pressures. As in the case of CO₂ reforming, forward CH₄ reaction rates using H₂O as the co-reactant depend linearly on the CH₄ partial pressure (5–25 kPa), but they are independent of the H₂O partial pressure (5–25 kPa); thus, the rate expression is identical to that for reactions of CH₄ with CO₂,

\[r_f = k_{\text{H₂O}} P_{\text{CH₄}}. \]

Moreover, the rate constants for H₂O \((k_{\text{H₂O}})\) and CO₂ \((k_{\text{CO₂}})\) reactions with CH₄ are identical within our experimental accuracy at each reaction temperature (Fig. 5). Activation energies are also similar for these two reaction mixtures (Table 1).

Rate constants measured during CH₄ reactions with CO₂ and H₂O co-reactants are also similar to those measured

Fig. 4. Effect of CH₄ (a) and CO₂ or H₂O (b) partial pressure on forward CH₄ reaction rate for CH₄–CO₂ and CH₄–H₂O reactions on 0.4 wt% Rh/Al₂O₃ treated at 1123 K (37.2% Rh dispersion) (5 mg catalyst, 873 K, total flow rate 100 cm³/min, 20 kPa CO₂ or H₂O in (a) and 10 kPa CH₄ in (b), 100 kPa total pressure, balance He).
Table 1
Forward CH₄ reaction rates, rate constants, activation energies, and preexponential factors for CH₄ reactions on 0.4 wt% Rh/Al₂O₃ calcined at 1123 K (37.2% Rh dispersion) (873 K, 20 kPa CH₄, 25 kPa CO₂ or H₂O, 100 kPa total pressure, balance Ar)

| Co-reactant | Turnover rate a (s⁻¹) | Rate constant (s⁻¹ kPa⁻¹) | Activation energy (kJ/mol) | Preexponential factor (s⁻¹ kPa⁻¹)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂</td>
<td>4.2</td>
<td>0.21</td>
<td>111</td>
<td>9.2 × 10⁵</td>
</tr>
<tr>
<td>H₂O</td>
<td>4.1</td>
<td>0.22</td>
<td>109</td>
<td>7.3 × 10⁵</td>
</tr>
<tr>
<td>None</td>
<td>3.9</td>
<td>0.19</td>
<td>108</td>
<td>5.5 × 10⁵</td>
</tr>
</tbody>
</table>

a Initial CH₄ turnover rate on Rh surface.
b Calculated based on transition-state theory treatments of CH₄ activation steps proceeding via an immobile activated complex [45].

in the absence of a co-reactant during the initial stages of CH₄ decomposition on 0.4 wt% Rh/Al₂O₃ (Fig. 6, Table 1). Clearly, the sole kinetically relevant step in catalytic reactions of CH₄ with H₂O or CO₂ to form H₂–CO mixtures and in stoichiometric decomposition of CH₄ to form C≡ and H₂ is the initial activation of a C–H bond in CH₄ catalyzed by interactions with surface Rh atoms. Also, the initial state of Rh surfaces during CH₄ decomposition and that during steady-state CH₄ reactions with H₂O or CO₂ are remarkably similar, suggesting the substantial absence of reactive or unreactive co-adsorbed species during steady-state catalysis.

The activation energies reported here (Table 1) agree with values previously reported for CO₂ reforming on 0.5 wt% Rh/Al₂O₃ (94.5 kJ/mol) [13], 1.0 wt% Rh/Al₂O₃ (88 kJ/mol) [23], 3.8 wt% Rh/SiO₂ (88 kJ/mol) [19], and 0.5 wt% Rh/Al₂O₃ (102 kJ/mol) [16]. In contrast, activation energies reported for dissociative adsorption of CH₄ on Rh films are significantly lower [43,44]. CH₄ dissociative adsorption on Rh films was reported to occur with an activation energy of only 29 kJ/mol [43] using field emission and molecular beam methods. Brass and Ehrlich [44] measured thermally averaged dissociation probabilities for CH₄ molecular beams on Rh films and reported an activation energy of 46.4 kJ/mol. Density functional theory calculations gave C–H activation energies of 67, 32, and 20 kJ/mol for CH₄ reactions on flat Rh(111), stepped Rh(211), and kinked Rh surfaces, respectively [33]. These theoretical estimates for stepped and kinked Rh surfaces resemble those measured in molecular beam experiments on Rh films [43,44], but they are much lower than those for catalytic CO₂ and H₂O reforming on supported Rh clusters, even though C–H bond activation steps are the sole kinetically relevant step during steady-state catalysis.

The underlying reasons for these differences remain unclear, but they raise concerns about the fidelity and relevance of clean flat surfaces as models of working metal clusters during catalysis for both molecular beam experiments and theoretical calculations. It is possible that unreactive carbon deposits form via stoichiometric CH₄ reactions at coordinatively unsaturated edge or kink and steps on surfaces of small Rh clusters during catalytic CH₄ reactions with CO₂ or H₂O. This would occur as an intrinsic component of CH₄ activation pathways and as a natural consequence of the higher binding energy of such sites for C≡, which also renders such
sites more effective than those on flatter surfaces at stabilizing transition states required for C–H bond activation. Such carbon species must be entirely unreactive during CH$_4$ reforming reactions because otherwise their surface density (and consequently the reaction rates) would vary with the concentration and identity of the co-reactant, leading to higher CH$_4$ reaction rates as the concentration or reactivity of co-reactants increases. These considerations make it unlikely that intrinsic surface passivation events are responsible for the observed discrepancies among various experimental and theoretical findings, because the expected wide range of reactivity for chemisorbed carbon species would make a significant subset of these species reactive toward CO$_2$ or H$_2$O as their respective concentrations increase during catalytic CH$_4$ reactions.

Preexponential factors for CH$_4$ activation during CH$_4$–CO$_2$ and CH$_4$–H$_2$O reactions are shown in Table 1, where values calculated using transition-state theory and immobile activated complexes [45] are also included for comparison. Measured preexponential factors are \sim 100 times larger than predicted for immobile activated complexes, indicating that the entropy of such activated complexes is significantly higher than expected from immobile species and that some two-dimensional translation occurs in the timescale of C–H bond activation events. We note that significant coverages of Rh surface atoms by unreactive carbon species would lead to lower than predicted preexponential factors. We also point out that using the low activation energies obtained in molecular beam and theoretical studies together with our measured catalytic turnover rates leads to absurdly large preexponential factors.

3.2. Dispersion and support effects on turnover rates for CH$_4$ reactions

Supported catalysts with a wide range of Rh dispersions (25.1–69.0%) and Rh crystallite diameters (1.4–4.0 nm) were prepared by varying the Rh content (0.1–1.6 wt%) and the thermal treatment temperature (923–1123 K) on Al$_2$O$_3$ and ZrO$_2$ supports. Rh dispersion decreased with increasing Rh content and treatment temperature, as expected from the greater sintering tendency of metal particles in both cases.

The effects of Rh dispersion and support identity on turnover rates (normalized by Rh surface atoms measured by H$_2$ chemisorption) for forward CO$_2$ and H$_2$O reactions with CH$_4$ are shown in Figs. 7a and 7b, respectively. Turnover rates and the effects of dispersion and support were identical for both reactions and also during the initial stages of CH$_4$ decomposition on Rh clusters without the presence of a co-reactant (Table 2), as expected from the rigorous kinetic and mechanistic equivalence among these three reactants.

Turnover rates increased monotonically with increasing Rh dispersion, suggesting that coordinatively unsaturated Rh surface atoms, prevalent in small clusters, are more active than those in low-index surface planes predominately exposed on larger Rh crystallites. Edge and corner atoms, with fewer Rh neighbors than those on terraces, appear to bind CH$_4$ and H more strongly and to decrease the energy required to form relevant transition states for the initial C–H bond activation step [33]. Activation barriers from theoretical estimates were about 30 kJ/mol lower on stepped Rh(211) surfaces than on close-packed Rh(111) surfaces [33], although both are much lower than our experimental values, as discussed earlier. These surface roughness effects have also been reported for CH$_4$ dissociation on other metal surfaces. For example, CH$_4$ dissociation barrier estimates on flat Pd(111) and stepped Pd surfaces gave values of 65 and 37 kJ/mol, respectively [33]. Measured thermally averaged CH$_4$ dissociation rates on Pd single crystals increased with increasing density of steps and kinks [32] and were 10–100 times higher on stepped Pd(679) than on hexagonal close-packed Pd(111) surfaces. Kinks and steps are also much more active than terrace sites for alkane dissociation reactions on Ir [46] and Pt [47] surfaces. On supported Ni catalysts, CH$_4$ decomposition has been shown to occur faster on smaller Ni crystallites [48]. Zhang et al. [13] and Wang and Ruckenstein [17] reported that CH$_4$ turnover rates increased with increasing metal dispersion for CO$_2$–CH$_4$ reforming on Rh/Al$_2$O$_3$. These effects of surface structure and cluster size on CH$_4$ activation rates are consistent with the more extensive evidence for cluster size effects reported here for Rh supported on Al$_2$O$_3$ and ZrO$_2$. Taken together, these data confirm the structure sensitivity of C–H bond activation steps (by the definition of Boudart [34]) and their role as the sole kinetically relevant step in CO$_2$ or H$_2$O reforming of CH$_4$ and in CH$_4$ decomposition reactions.

The identity of the oxide surfaces on which Rh clusters are supported does not influence C–H bond activation steps or CH$_4$ conversion turnover rates, but it generally influences the size of Rh clusters for a given Rh content and thermal treatment protocol. When this Rh dispersion is used to obtain turnover rates, these turnover rates depend only on the size and structure of Rh clusters. Thus, it appears that electronic effects of the support on Rh clusters are weak in the size range of the clusters studied (1.4–4.0 nm) and that any involvement of the support in co-reactant activation, even if operative, is not kinetically relevant because overall reaction rates are limited only by C–H bond activation elementary steps, which are not catalyzed by the oxide supports. Some previous studies reported no detectable support

<table>
<thead>
<tr>
<th>Rh load (%)</th>
<th>Rh dispersion (%)</th>
<th>Forward CH$_4$ turnover rate (s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>50.1</td>
<td>CH$_4$–CO$_2$ 6.1</td>
</tr>
<tr>
<td>0.2</td>
<td>43.4</td>
<td>CH$_4$–CO$_2$ 5.1</td>
</tr>
<tr>
<td>0.4</td>
<td>37.2</td>
<td>CH$_4$–CO$_2$ 4.2</td>
</tr>
<tr>
<td>0.8</td>
<td>30.1</td>
<td>CH$_4$–CO$_2$ 3.3</td>
</tr>
<tr>
<td>1.6</td>
<td>25.1</td>
<td>CH$_4$–CO$_2$ 2.4</td>
</tr>
</tbody>
</table>
effects for CO₂ reforming of CH₄ on Rh [9,49] and Ir [9] catalysts, but others have observed significant effects, which have been used to implicate the support in co-reactant activation steps [50,51]. Tsipouriari et al. [50] reported that CH₄ turnover rates for CO₂ reforming are about two times greater on Rh/Al₂O₃ than on Rh/SiO₂, even though similar Rh dispersions of unity were claimed for both samples based on H₂ chemisorption. Nakamura et al. [51] proposed that CO₂ activation was the kinetically relevant step in CO₂–CH₄ reforming reactions on Rh and that Al₂O₃ supports increase the rate of CO₂ dissociation and thus overall reaction rates. Previous reports of support effects and of their involvement in co-reactant activation are inconsistent with the data presented in the current study and with the demonstrated kinetic irrelevance of co-reactant activation steps. Supports can influence metal dispersion and, in this manner, affect forward turnover rates, which are themselves very sensitive to the size of supported Rh clusters.

CH₄–CO₂ turnover rates on Rh-based catalysts reported by Zhang et al. [13] and Mark and Maier [9] are also shown in Fig. 7a. We have corrected these literature rates for approach to equilibrium and extrapolated to our reaction conditions (873 K, 20 kPa CH₄) using a first-order CH₄ dependence and the activation energy reported in the literature (94.5 kJ/mol [13]). The net rates reported in the literature were assumed to be forward rates in view of the claimed differential conditions in these studies. Fig. 7a shows that these literature turnover rates for CO₂–CH₄ reactions and the data in the current study give consistent effects of dispersion, irrespective of the identity of the support.

Turnover rates reported here for CH₄ reforming are based on the number of exposed surface Rh atoms measured from H₂ chemisorption uptakes before reforming reactions. Sintering or blockage of Rh surfaces by unreactive chemisorbed species can occur and lead to Rh dispersions lower than those measured before reaction. We have used the oxidation of CO, a structure–insensitive reaction [52,53], to probe the surface properties of working catalysts, because chemisorption measurements of used catalysts are not possible on the catalyst amounts (5 mg) used for steady-state CH₄ reforming reaction. These CO oxidation rate measurements are also helpful in ruling out artifacts in kinetic and activation energy estimates caused by effects of temperature or reactant concentrations on the extent of blockage or sintering. These effects, if present, may contribute to the significant differences in measured activation energies for CH₄ reforming on supported Rh catalysts [13,16,19] and for CH₄ activation on single crystals [43,44]. We note that the kinetic irrelevance of co-reactant activation steps indicates that any adsorbed species are unreactive during catalysis; thus any changes in Rh surface availability, as measured by CO oxidation, would indicate unreactive deposits or sintering.

CO oxidation and CH₄ reforming rates at 363 K on 0.8 wt% Rh/ZrO₂ are shown in Fig. 8. CO oxidation rates on fresh catalyst are similar to those measured after steady-state CH₄–CO₂ or CH₄–H₂O reactions, indicating that exposed Rh atoms are not lost by sintering or covered by unreactive carbon residues during CH₄ reforming reactions. We cannot rigorously rule out that some Rh surface atoms (< 5%) become unavailable during the first few turnovers and that such atoms exhibit uniquely reactive character for C–H bond activation. We can conclude, however, that such sites cannot turn over and are therefore catalytically inconsequential. These findings suggest that CH₄ chemistry on model surfaces must be extended beyond single-turnover stoichiometric activation reactions in both experimental and molecular simulations.

3.3. Isotopic evidence of kinetic relevance and reversibility of proposed elementary steps

In this section, we first present a hypothesis for a common mechanism for CO₂ and H₂O reforming and water–gas
shift reactions and place it within the context of more complex previous proposals. Then, we present the results of isotopic tracing and exchange studies and kinetic isotope effect measurements carried out to probe this mechanistic hypothesis for CO2 and H2O reactions with CH4 on supported Rh catalysts. The kinetic dependence of forward CH4 reaction rates on reactants and products led us to propose a set of elementary steps involving simple intermediates, including chemisorbed carbon (reactions (7)–(17)). CH4 decomposes to C* in a series of elementary H-abstraction steps, and rate constants for subsequent H-abstractions are greater than those for the initial C–H bond activation [54]; this cascade process leads to low CHx* coverages and to C* as the most abundant carbon-containing reactive intermediate. These C–H bond activation steps are followed by C* and H* removal via either desorption or reaction with chemisorbed O* derived from CO2 or H2O co-reactants.

\[\text{CH}_4 \rightarrow 2^{*} \xrightarrow{k_1} \text{CH}_3^{*} + \text{H}^{*}, \]
\[\text{CH}_3^{*} + \text{O} \rightarrow \text{CH}_2^{*} + \text{H}^{*}, \]
\[\text{CH}_2^{*} + \text{O} \rightarrow \text{CH}^{*} + \text{H}^{*}, \]
\[\text{CH}^{*} + \text{O} \rightarrow \text{C}^{*} + \text{H}^{*}, \]
\[\text{CO}_2 + 2^{*} \rightarrow \text{CO}^{*} + \text{O}^{*}, \]
\[\text{C}^{*} + \text{O}^{*} \rightarrow \text{CO}^{++*}, \]
\[\text{CO}^{*} \rightarrow \text{CO} + \text{O}^{*}, \]
\[\text{H}^{*} + \text{H}^{*} \rightarrow \text{H}_2^{*} + \text{H}^{*}, \]
\[\text{H}^{*} + \text{O}^{*} \rightarrow \text{OH}^{*} + \text{H}^{*}. \]

Here, → denotes an irreversible step and ↔ a quasi-equilibrated step, \(k_i \) is the rate coefficient, and \(K_i \) is the equilibrium constant for step \(i \). When (•) is the most abundant surface intermediate, only the rate constant for step (7) appears in the rate expression and the overall CH4 conversion rates become proportional to CH4 concentration and independent of the identity or concentration of (CO2 or H2O) co-reactants. In these pathways, steps (11) and (13)–(17) are assumed to be reversible and quasi-equilibrated. We note that these elementary steps provide required pathways to complete CH4 turnovers using either CO2 or H2O, but also a complete mechanism for water–gas shift reactions. Thus, this mechanism provides a unifying kinetic treatment for chemical reactions that are typically, but inappropriately and nonrigorously, treated as independent kinetic processes [15,16]. Mark and Maier [9] and Lercher et al. [55] proposed a similar reaction scheme on Rh- and Pt-based catalysts, respectively, without direct evidence or rigorous kinetic treatment, and they did not extend the sequence to include H2O reforming or water–gas shift reactions.

The mechanism for CH4 reactions with CO2 (or H2O) remains controversial and previous studies have reached contradictory conclusions. Efthathiou et al. [56] used isotopic switching experiments to conclude that carbon-containing species derived from CO2 accumulated during CO2 reforming on Rh/Al2O3, and proposed the elementary step

\[\text{OH}^{*} + \text{C}^{*} \rightarrow \text{CO}^{*} + \text{H}^{*}. \]

We note that the kinetic relevance of this step would require significant differences between the rates of CH4 conversion with CO2 and H2O co-reactants, in contradiction with the data presented here. This study concluded that CO2 dissociation (step (11)) is the kinetically relevant step. CO2 and CH4 activation studies on Rh/Al2O3 led to the proposal that CH4 dissociation occurs via reaction with chemisorbed oxygen (step (19)) formed via CO2 dissociation, which was in turn aided by chemisorbed H atoms (step (20)) [49]:

\[\text{CH}_4^{*} + \text{O}^{*} \rightarrow \text{CH}_3^{*} + \text{OH}^{*}. \]
\[\text{CO}_2^{*} + \text{H}^{*} \rightarrow \text{CO}^{*} + \text{OH}^{*}. \]

This proposal would lead to more complex pathways than in steps (7)–(17) and to reaction rates sensitive to the surface concentration of O*, which would depend in turn on the reactivity and concentration of the co-reactants.

Kinetic isotope effects were measured from relative forward rates of CH4–CO2 and CD4–CO2 reactant mixtures at 873 K. For H2O reforming, kinetic isotope effects were measured from forward reaction rates with CH4–H2O, CD4–H2O, and CD4–D2O mixtures at 873 K. Fig. 9 shows forward methane reaction rates for various isotopic reaction mixtures on 0.1 wt% Rh/Al2O3 (treated at 1123 K; 50.1% dispersion). Normal kinetic isotope effects were measured...
for both CH₄–CO₂ (1.56) and CH₄–H₂O (1.54) reactions and also for CH₄ decomposition (1.60) (Table 3); their values are the same within our experimental accuracy (1.54–1.60). This normal kinetic isotope effect for CH₄ activation is consistent with kinetically relevant C–H bond activation steps (step (7)). Replacing H₂O with D₂O did not influence steam reforming rates (Fig. 9), indicating that steps involving water activation, reaction of C* with hydroxyl groups, and hydrogen desorption are not kinetically relevant. Elmasides and Verykios [57] measured a kinetic isotope value of 1.6 for partial oxidation of CH₄–O₂ reactant mixtures at 903 K on Ru/TiO₂. This value is very similar to those reported here for H₂O and CO₂ reforming reactions on Rh-based catalyst, suggesting that partial oxidation reactions may also involve C–H activation as the sole kinetically relevant elementary step.

The reversibility of C–H bond activation steps was probed by measuring the rate of formation of CH₄–Dₓ isotopomers during reactions of CH₄/CD₄/CO₂ mixtures. Reversible C–H bond activation would lead to comparable rates of chemical conversion and cross-exchange, because the latter reflect the microscopic reverse of C–H bond activation steps. Irreversible steps would lead instead to cross-exchange rates much lower than chemical conversion rates. The reaction of CH₄/CD₄/CO₂ (1:1:2) mixture was carried out at 873 K on 0.1 wt% Rh/Al₂O₃; chemical conversion and isotopic exchange rates were measured by online mass spectrometry, after removal of H₂D₂–O by cooling the effluent to 218 K. Rates of CH₄→Dₓ (0<x<4) formation and of methane chemical conversion are shown in Table 4. CH₄/CD₄ cross-exchange rates (0.24 s⁻¹) are much lower than chemical conversion rates (6.1 s⁻¹), indicating that C–H bond activation is essentially irreversible; the microscopic reverse of C–H activation occurs, on average, once every 25 chemical conversion turnovers. The approach to equilibrium for CO₂ reforming, η, was 0.03 in this experiment; thus, C–H bond activation steps are as reversible as the overall chemical reaction, a condition that must be satisfied by the sole kinetically relevant step in any reversible chemical reaction mechanism.

The H/D ratio in the hydrogen formed from these equimolar CH₄–CD₄ mixtures is higher than unity (1.78) and shows a binomial isotopomer distribution. This reflects the higher reactivity of CH₄ relative to CD₄; this ratio is very similar to the value of the kinetic isotope effect measured from independent CH₄–CO₂ and CD₄–CO₂ reactant mixtures. The binomial distribution of dihydrogen isotopomers provides indirect and preliminary evidence for the quasi-equilibrated nature of recombining hydrogen desorption steps.

Water forms during CO₂ reforming of CH₄ because some elementary steps lead to the removal of O⁺ forms via CO₂ dissociation by reaction with H⁺ instead of C* in a manner that affects reversible water–gas shift reactions. The composition of the products formed suggests that these steps are at equilibrium during CO₂ reforming (Fig. 3). As a result, water formation must involve quasi-equilibriated elementary steps. CH₄/CO₂/D₂ (1:1:0.2) mixtures were reacted on 0.1 wt% Rh/Al₂O₃ at 873 K. No deuterated methane isotopomers were detected in the effluent, as expected from irreversible C–H bond activation and the low η values (<0.05) in these experiments. The H/D fraction expected in water and dihydrogen if all H atoms in chemically converted CH₄ mixed rapidly with all D atoms in D₂ within a pool of surface intermediates is 0.70. Water and dihydrogen in the effluent contained H/D ratios of 0.69 and 0.71, respectively.
indicating that complete equilibration occurs between dihydrogen and water gaseous species and their corresponding chemisorbed precursors and intermediates. Fig. 10a shows the binomial isotopomer distribution detected in the water formed from CH$_4$/CO$_2$/D$_2$ mixtures, consistent with fast and quasi-equilibrated recombination of H* and OH* (step (16)). Similar binomial distributions were observed for dihydrogen isotopomers (Fig. 10b), indicating that recombinative hydrogen desorption (step (14)) is also quasi-equilibrated during CH$_4$/CO$_2$ reactions on Rh/Al$_2$O$_3$ at 873 K.

The reversibility of CO$_2$ activation steps (step (11)) was probed using 12CH$_4$/12CO$_2$/CO$_2$ (1:1:0.2) reactant mixtures on 0.1 wt% Rh/Al$_2$O$_3$ at 873 K. The 13C fraction was similar in the CO (0.148) and CO$_2$ (0.138) present in the reactor effluent under conditions far from equilibrium ($\eta < 0.05$), even though reactant mixtures consisted of pure 12CO$_2$ and 13CO. This 13C content corresponds to complete chemical and isotopic equilibration between CO and CO$_2$, even at low CH$_4$ chemical conversions (3.5%). These data indicate that CO$_2$ dissociation steps are much faster than kinetically relevant CH$_4$ dissociation steps and that steps (11) and (13) take place (in both directions) many times in the time required for one CH$_4$ chemical conversion turnover. Thus, CO$_2$ activation steps are reversible and quasi-equilibrated during CH$_4$–CO$_2$ reactions and, by inference from the kinetic and mechanistic equivalence of CH$_4$–CO$_2$ and CH$_4$–H$_2$O reactions, also during the latter reaction. 13CH$_4$ was not detected during reactions of 12CH$_4$/12CO$_2$/CO$_2$ mixtures, because the overall reaction is far from equilibrium ($\eta < 0.05$) during these experiments.

Quasi-equilibrated steps leading to water and dihydrogen and to CO–CO$_2$ interconversion, taken together with the expected equilibration of fast CO adsorption–desorption steps, require that the water–gas shift reaction must also be quasi-equilibrated during CH$_4$–CO$_2$ and CH$_4$–H$_2$O reactant mixtures on Rh catalysts, as indeed found (Fig. 3). In view of the kinetic equivalence of elementary steps involved in CH$_4$ reactions with CO$_2$ and H$_2$O, we consider these conclusions to be rigorously applicable also to CH$_4$–H$_2$O reactions on Rh-based catalysts.

CH$_4$ reforming pathways shown in steps (7)–(17) are consistent with rate and isotopic measurements using CO$_2$ and H$_2$O co-reactants, with the mechanistic equivalence of CH$_4$–H$_2$O and CH$_4$–CO$_2$ reactions, and with the quasi-equilibrated nature of steps leading to water–gas shift. The first C–H bond activation step solely determines overall reaction rates and it is exactly as reversible as the overall CH$_4$ chemical reaction. Co-reactant activation is fast and quasi-equilibrated and leads to Rh surfaces that are essentially unaffected by the rate at which C* is removed by the co-reactant. Isotopic studies were carried out using 0.1 wt% Rh/Al$_2$O$_3$ and predominately at 873 K, but the similar rate expressions obtained at all temperatures and on all supported Rh catalysts indicate that these mechanistic conclusions are valid for Rh catalysts in general. Parallel studies of CH$_4$ reactions with H$_2$O and CO$_2$ on Ru [29], Ir, Pt, and Ni [35] have led to similar conclusions about the identity, reversibility, and kinetic relevance of the elementary steps in steps (7)–(17). We note that these elementary steps also provide a rigorous basis for kinetic treatments of carbon filament formation during CH$_4$ reforming reactions, as we discuss in detail elsewhere [35]. For these treatments, C* concentrations and the identity and reactivity of co-reactants become relevant for kinetic descriptions of carbon formation, even when these properties remain unimportant in determining kinetic rates of CH$_4$ chemical conversion to synthesis gas.

4. Conclusions

Forward rates and activation energies for CH$_4$ reforming turn over rates were identical with those for CO$_2$ and H$_2$O co-reactants and similar to values obtained during the initial stages of stoichiometric CH$_4$ decomposition on Rh clusters supported on Al$_2$O$_3$ and ZrO$_2$. Reaction rates were proportional to CH$_4$ pressures and independent of the identity and concentration of co-reactants. The concentration of
reaction products influenced net rates only by varying the distance from equilbrium for the overall reaction; their effects disappear when these thermodynamic effects are taken into account by converting experimental net rates to forward reaction rates. Measured kinetic isotope effects were also independent of co-reactant, and their values are consistent with the sole kinetic relevance of C–H bond activation steps and with fast scavenging of chemisorbed carbon intermediates by both H2O and CO2, which leads to Rh surfaces essentially free of adsorbed reaction intermediates. These conclusions are consistent with isotopic tracer studies, which indicate that H and OH species recombine rapidly to form H2 or H2O in quasi-equilibrated steps and that CO2 and H2O dissociations are also quasi-equilibrated during CH4 reforming reactions. Turnover rates increased monotonically with increasing Rh dispersion for CH4 reactions with CO2 or H2O and for CH4 decomposition reactions, suggesting that coordinate unsaturation of surface Rh atoms leads to more stable transition states for CH4 dissociation reactions. The identity of the support influenced Rh dispersions, but not CH4 reforming turn over rates; any roles of supports in co-reactant activation cannot lead to detectable changes in CH4 reforming turnover rates because co-reactant activation is not kinetically relevant.

Acknowledgments

This study was supported by BP as part of the Methane Conversion Cooperative Research Program at the University of California at Berkeley. Technical discussions with the Drs. Theo Fleisch and John Collins are gratefully acknowledged.

References