

Available online at www.sciencedirect.com

Journal of Catalysis 223 (2004) 161-169

JOURNAL OF CATALYSIS

www.elsevier.com/locate/jcat

Effects of support on bifunctional methanol oxidation pathways catalyzed by polyoxometallate Keggin clusters

Haichao Liu and Enrique Iglesia*

Department of Chemical Engineering, University of California at Berkeley, Chemical Sciences Division, E.O. Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

Received 4 November 2003; revised 26 December 2003; accepted 6 January 2004

Abstract

H₅PV₂Mo₁₀O₄₀ polyoxometallate Keggin clusters supported on ZrO₂, TiO₂, SiO₂, and Al₂O₃ are effective catalysts for CH₃OH oxidation reactions to form HCHO, methyl formate (MF), and dimethoxymethane (DMM). Rates and selectivities and the structure of supported clusters depend on the surface properties of the oxide supports. Raman spectroscopy showed that Keggin structures remained essentially intact on ZrO₂, TiO₂, and SiO₂ after treatment in air at 553 K, but decomposed to MoO_x and VO_x oligomers on Al₂O₃. Accessible protons per Keggin unit (KU) were measured during CH₃OH oxidation by titration with 2,6-di-tert-butyl pyridine. For similar KU surface densities (0.28–0.37 KU/nm²), the number of accessible protons was larger on SiO₂ than on ZrO₂ and TiO₂ and much smaller on Al₂O₃ supports, even though residual dimethyl ether (DME) synthesis rates after titrant saturation indicated that the fractional dispersion of KU was similar on the first three supports. These effects of support on structure and on H^+ accessibility reflect varying extents of interaction between polyoxometallate clusters and supports. Rates of CH₃OH oxidative dehydrogenation per KU were higher on ZrO₂ and TiO₂ than on SiO₂ at similar KU surface densities (0.28–0.37 KU/nm²) and dispersion, indicating that redox properties of Keggin clusters depend on the identity of the support used to disperse them. ZrO₂ and TiO₂ supports appear to enhance the reducibility of anchored polyoxometallate clusters. Rates were much lower on Al₂O₃, because structural degradation led to less reactive MoO_x and VO_x domains. CH₃OH reactions involve primary oxidation to form HCHO and subsequent secondary reactions to form DMM and MF. These reactions involve HCHO-CH₃OH acetalization steps leading to methoxymethanol (CH₃OCH₂OH) or hemiacetal intermediates, which condense with CH₃OH on acid sites to form DMM or dehydrogenate to form MF. CO_x formation rates are much lower than those of other reactions, and DME forms in parallel pathways catalyzed by acid sites. Secondary reactions leading to DMM and MF are strongly influenced by the chemical properties of support surfaces. Acidic SiO₂ surfaces favored DMM formation, while amphoteric or dehydrogenating surfaces on ZrO₂ and TiO₂ led to MF formation, as a result of the varying role of each support in directing the reactions of HCHO and CH₃OH and of the CH₃OCH₂OH intermediates toward DMM or MF, which was confirmed using physical catalyst-pure support mixtures. These support effects reflect the bifunctional pathways of CH₃OH reactions. These pathways are consistent with the effects of residence time and of the partial removal of H⁺ sites by titration using 2,6-di-tert-butyl pyridine.

© 2004 Published by Elsevier Inc.

Keywords: Methanol oxidation; Keggin structures; Support effects; Methyl formate synthesis; Zirconia

1. Introduction

Oxidative methanol dehydrogenation reactions lead to formaldehyde (HCHO), which can react via sequential condensation or dehydrogenation reactions to form dimethoxymethane (methylal, CH₃OCH₂OCH₃, DMM) or methyl formate (HCOOCH₃, MF). Bimolecular CH₃OH dehydration occurs in parallel on acid sites to form dimethyl ether (CH₃OCH₃, DME). Selectivities are strongly influenced by acid–base and redox properties of both the redox-active components and the oxide supports [1]. Polyoxoanions with Keggin structures and charge-balancing protons or metal cations contain acid and redox sites; their number and reactivity can be controlled by varying addenda or central atoms, and the nature of the charge-balancing cations [2,3]. Thus, these materials provide suitable model structures with significant compositional and structural flexibility for catalyzing multifunctional pathways required to convert methanol to more complex and useful molecules. As a result, CH₃OH

^{*} Corresponding author: Department of Chemical Engineering, University of California at Berkeley, Berkeley, CA 94720-1462, USA.

E-mail address: iglesia@cchem.berkeley.edu (E. Iglesia).

^{0021-9517/\$ –} see front matter $\,\, \textcircled{}^{\circ}$ 2004 Published by Elsevier Inc. doi:10.1016/j.jcat.2004.01.012

oxidation has been studied extensively on Keggin clusters of varying composition and catalytic functions [1,2,4–7]

We have recently reported the one-step selective synthesis of DMM via methanol oxidation at low temperatures (400-500 K) on SiO₂-supported $H_{3+n}PV_nMo_{12-n}O_{40}$ (*n* = 0–4) Keggin clusters [8]; this reaction proceeds via bifunctional pathways requiring acid and redox sites. The controlled titration or dehydroxylation of Brønsted acid sites by thermal treatment or by permanent titration with organic bases, such as pyridine, led to a selective decrease in DME formation rates, without significant changes in the rates of DMM synthesis [8,9]. The number and acid strength of the protons in Keggin clusters can also be controlled by varying the support materials and their interactions with such clusters during anchoring [2,10–12]; these supports can also introduce additional catalytic functions for reactions of the methanol reactants and of their primary HCHO products, as we show in the present study.

We report here strong effects of the support composition on the selectivity of CH₃OH-O₂ reactions catalyzed by H₅PV₂Mo₁₀O₄₀ clusters. This polyoxometallate composition was chosen because it led to the highest rates of CH₃OH oxidation to HCHO intermediates during DMM synthesis on silica-supported samples [8]. ZrO₂ and TiO₂ amphoteric oxides with surfaces that catalyze dehydrogenation reactions led to the selective formation of methyl formate. Unreducible oxides with weakly acidic surfaces, such as SiO₂, led predominately to dimethoxymethane. Al₂O₃-supported H₅PV₂Mo₁₀O₄₀ clusters led to DME with high selectivity. These supports also interacted differently with the anchored Keggin clusters and led to varying extents of deprotonation during synthesis and thermal treatment [2,10–12]. Supports influenced bifunctional methanol reactions by changing the density and type of active Keggin structures and of support active sites, in a manner that introduces significant flexibility and opportunities for designing selective catalysts for the synthesis of complex oxygenates via oxidative reactions of methanol.

2. Methods

Supported H₅PV₂Mo₁₀O₄₀ catalysts were prepared by incipient wetness impregnation of ZrO(OH)₂, SiO₂ (Cab-O-Sil, 288 m²/g), TiO₂ (Degussa, P25), or γ -Al₂O₃ (Alcoa, HiQ31) with methanolic (Merck, 99.98%) solutions of H₅PV₂Mo₁₀O₄₀ · 30H₂O (Japan New Metals Co.) at 298 K for 5 h. ZrO(OH)₂ was prepared via hydrolysis of aqueous zirconyl chloride (> 98%, Aldrich) at a pH of ~ 10 using NH₄OH (14.8 N, Fisher Scientific), subsequent filtering of precipitated powders, and drying in ambient air at 393 K overnight [13]. Surface areas were measured from N₂ adsorption uptakes at its normal boiling point (Autosorb-1; Quantachrome) using standard multipoint BET analysis methods. Raman spectra were collected using a HoloLab 5000 spectrometer (Kaiser Optical) with a frequency-doubled Nd-YAG laser (532 nm) and a CCD camera cooled to 233 K to reduce thermal noise. Samples were pressed into self-supporting thin wafers, placed on a rotary stage within a quartz cell, and rotated at 1000 rpm to avoid local heating by the laser beam. Raman spectra were measured for fresh samples exposed to ambient air and for samples treated for 1 h in flowing 20% O_2/He (O_2 , Praxair, 99.999%; He, Airgas, 99.999%; 0.67 cm³/s) at 473–773 K.

Methanol reaction rates and selectivities were measured at 453-513 K in a packed-bed quartz microreactor using supported polyoxometallate catalysts (0.1-0.3 g; 0.18-0.25 mm) diluted with ground quartz to prevent bed temperature gradients. Samples were treated in flowing 20% O2/He (O₂, Praxair, 99.999%; He, Airgas, 99.999%; 0.67 cm³/s) for 1 h at 513 K before reaction rate measurements. Reactant mixtures contained CH₃OH (4 kPa; Merck, 99.98%) and O₂ (9 kPa) and N₂ (1 kPa) (Praxair, Certified O₂/N₂ mixture), with He (Airgas, 99.999%) as balance. CH₃OH was introduced by bubbling He gas through a glass saturator filled with liquid CH₃OH held at 273 K. 2,6-Di-tert-butyl pyridine titration measurements were carried out during methanol oxidation at 453 K in a packed-bed quartz microreactor using similarly diluted samples. Mixtures of methanol and 2,6-ditert-butyl pyridine (h-pyridine; Aldrich, 97%) with a 1110:1 molar ratio were introduced by continuous liquid injection using a microsyringe pump (Cole-Parmer 74900). All transfer lines between the point of liquid introduction and the gas chromatograph were kept above 393 K to avoid condensation. Reactants and products were analyzed by on-line chromatography (Hewlett-Packard 6890GC) using a methylsilicone capillary column (HP-1; 30 m \times 0.25 mm, 0.25-µm film thickness) and a Porapak Q packed column (80-100 mesh, $1.82 \text{ m} \times 3.18 \text{ mm}$) connected to flame ionization and thermal conductivity detectors, respectively. Selectivities are reported on a carbon basis as the percentage of the converted CH₃OH appearing as a given product, and rates are reported as the number of CH₃OH molecules converted into a given product per Keggin unit per hour. Experiments using empty reactors did not lead to detectable CH3OH conversions under any of the conditions in this study.

3. Results and discussion

Table 1 lists methanol conversion rates and selectivities on $H_5PV_2Mo_{10}O_{40}$ supported on ZrO₂, TiO₂, and Al₂O₃ at 493 K, and for comparison, also on SiO₂ supports from our previous study [8]. These samples contain similar densities of Keggin units (0.28–0.37 KU/nm²). Kinetic comparisons are made at similar CH₃OH conversion levels (30–40%), because relative contributions from primary and secondary reactions depend on residence time and conversion, as discussed below. Reaction rates reported in Table 1 are normalized per Keggin unit and reported on a DME-free basis Table 1

Methanol oxidation rates, selectivities, and number of accessible Brønsted acid sites on $H_5PV_2Mo_{10}O_{40}$ supported on ZrO_2 , TiO_2 , SiO_2 , and Al_2O_3 (treated at 553 K) and on bulk $H_5PV_2Mo_{10}O_{40}$ and pure supports (493 K, 4% CH₃OH, 9% O₂, 1% N₂, He balance, 30–40% CH₃OH conversion)

Catalyst	Surface density	Brønsted acid	Rate (DME-free)	ODH rate	Selectivity (% carbon)				
	(KU/nm ²)	sites (H ⁺ /KU) ^b	(molecules/(KU h))	(molecules/(KU h))	DME	HCHO	MF	DMM	CO _x
H ₅ PV ₂ Mo ₁₀ O ₄₀ /ZrO ₂	0.31	0.92	213.7	127.8	16.1	21.2	52.4	8.3	2.0
H ₅ PV ₂ Mo ₁₀ O ₄₀ /SiO ₂	0.28	1.24	190.9	79.7	36.5	8.1	2.7	51.2	0
H ₅ PV ₂ Mo ₁₀ O ₄₀ /TiO ₂	0.37	0.86	195.2	146.0	9.5	53.2	30.2	7.1	0
H ₅ PV ₂ Mo ₁₀ O ₄₀ /Al ₂ O ₃	0.35	0.41	51.2	41.3	71.1	19.2	5.1	4.6	0
Bulk H ₅ PV ₂ Mo ₁₀ O ₄₀	_	0.02	5.5	2.6	48.1	8.7	0.4	40.2	2.6
ZrO ₂	_	_	Trace	-	_	-	-	-	_
SiO ₂	_	_	Trace	_	_	_	_	_	-
TiO ₂	_	_	Trace	_	_	_	_	_	-
Al_2O_3	_	_	26.0 ^a	_	100	0	0	0	0

^a CH₃OH conversion rate: mmol/g Al₂O₃ per hour at 34% CH₃OH conversion.

^b From 2, b di-tert-butyl pyridine uptakes during catalysis.

Scheme 1. Proposed primary and secondary CH₃OH reaction pathways.

(conversion to all products except DME). Pure Al_2O_3 supports formed only DME, while other pure supports did not form products at detectable rates. CH_3OH conversion rates were slightly higher when $H_5PV_2Mo_{10}O_{40}$ clusters were supported on ZrO_2 and TiO_2 than when supported on SiO_2 , and they were much lower when supported on Al_2O_3 than on all other supports (Table 1).

CH₃OH oxidation occurs via rate-determining C–H bond activation steps in methoxy groups to form HCHO via redox cycles catalyzed by Keggin clusters [1]. HCHO can then react in subsequent reactions with methanol to form hemiacetal or methoxymethanol intermediates (CH₃OCH₂OH) [14–16], which can undergo condensation reactions with CH₃OH to form DMM or hydrogen abstraction to form MF (Scheme 1). Reactions listed along the horizontal direction in Scheme 1 require Brønsted acid sites, while those represented by vertical arrows involve reactive forms of oxygen (O^{*}) from either Keggin clusters or active supports.

In Scheme 1, the irreversible nature of the oxidative conversion of CH₃OH to HCHO implies that each HCHO, DMM, and MF product requires one oxidative CH₃OH dehydrogenation event; thus, the rates of the latter step are given by the sum of the molar rates of formation of these products. These oxidative dehydrogenation (ODH) rates are 1.5-1.8 times greater on ZrO₂ and TiO₂ than on SiO₂ (Table 1), apparently as a result of the higher redox reactivity and ability to undergo catalytic redox cycles for Keggin clusters supported on ZrO₂ and TiO₂ than on SiO₂, as in previously reported trends for MoO_x and VO_x domains on these supports [17,18]. The more reducible nature of TiO₂ and ZrO₂ surfaces typically leads to more reducible oxide domains than more refractory and acidic SiO₂ and Al₂O₃ surfaces [13,17,18]. H₅PV₂Mo₁₀O₄₀ precursors supported on Al₂O₃ were less reactive for oxidative dehydrogenation reactions than on other supports also because of structural degradation of Keggin clusters on Al₂O₃ to form MoO_x and VO_x domains (as discussed below), which undergo redox cycles more slowly than intact Keggin clusters, as previously shown also on SiO₂ surfaces [8].

The identity of the support also influences CH₃OH reaction selectivities on H₅PV₂Mo₁₀O₄₀ clusters at all CH₃OH conversions; these selectivity comparisons are made at 30-40% CH₃OH conversion, but the trends remain at all conversion levels. On SiO₂, DMM is the main product (51.2%) along with DME (36.5%), while MF is formed with very low selectivity (2.7%) [8]. In marked contrast, MF became the predominant product (52.4%) and DMM selectivities were very low (8.3%) when ZrO₂ was used as the support instead of SiO₂ (Table 1). DME selectivities were much lower on H₅PV₂Mo₁₀O₄₀/ZrO₂ than on SiO₂-supported samples (16.1 vs 36.5%). On TiO₂ supports, H₅PV₂Mo₁₀O₄₀ clusters formed predominantly HCHO (53.2%); the MF selectivity was 30.2%, with very low DME and DMM selectivities (9.5 and 7.1%, respectively). This appears to reflect the lower reactivity of TiO₂ supports for secondary reactions of HCHO-CH₃OH mixtures to form MF compared with ZrO₂ surfaces, which preserves a larger fraction of the primary HCHO products in the reacting mixture. CH₃OH dehydration to DME became the predominant reaction ($\sim 71\%$ selectivity) on H₅PV₂Mo₁₀O₄₀/Al₂O₃ (Table 1), as expected from the reactivity of Lewis acid sites on Al₂O₃ supports in bimolecular CH₃OH dehydration reactions. These support effects are consistent with the observed changes in acidity and with the observed structural evolution of H5PV2M010O40 clusters on these supports, which were probed by organic base titration (i.e., 2,6-di-tert-butyl pyridine) and Raman spectroscopy, respectively, as we discuss immediately below.

Fig. 1 shows the Raman spectra for $H_5PV_2Mo_{10}O_{40}$ supported on SiO₂, ZrO₂, TiO₂, and Al₂O₃ (0.28–0.40 KU/ nm²) after exposure to ambient air at 298 K (Fig. 1a) and after treatment in flowing dry air at 553 K within the Raman

Fig. 1. Raman spectra for $H_5PV_2Mo_{10}O_{40}$ supported on SiO₂, ZrO₂, TiO₂, and Al₂O₃ with surface densities of 0.28–0.37 KU/nm² at ambient conditions (a) and after treatment in flowing dry air at 553 K for 1 h (b).

cell (Fig. 1b). H₅PV₂Mo₁₀O₄₀/ZrO₂ samples exposed to ambient moisture showed Raman bands at 1003 (s), 986 (sh), and ~ 907 (w) cm⁻¹ in the range 700–1100 cm⁻¹ (Fig. 1a). The bands at 1003 and 986 cm⁻¹ are assigned to terminal Mo=O stretching vibrations, and the band around 907 cm^{-1} to bridging Mo-O-Mo (or Mo-O-P) stretching modes in intact Keggin structures [19]. Terminal Mo=O stretching bands at 1002 and 984 cm⁻¹ shifted to higher frequencies 1016 and 1003 cm^{-1} , respectively, after treatment in 20% O_2 /He at 553 K, while the band at 907 cm⁻¹ was essentially unchanged by this treatment (Fig. 1b). The observed shift to higher frequencies on thermal treatment and the concurrent water desorption reflect changes in Mo coordination and in bond orders for terminal Mo=O bonds, caused by desorption of water loosely coordinated within the secondary crystal structure of the polyoxometallate clusters [20].

Two new weak bands appeared at 1039 and 852 cm^{-1} after treatment at 553 K; the 1039 cm^{-1} band was tentatively assigned to vanadyl species formed by removal of some of the V atoms in H₅PV₂Mo₁₀O₄₀ clusters during thermal treatment [19]. The weak broad band at 852 cm^{-1} was assigned to amorphous β -MoO₃ [5,10], indicating some limited structural degradation of supported Keggin clusters during treatment at 553 K. The strengthening of the 1003 cm^{-1} band relative to that at 1015 cm⁻¹ after treatment at 553 K (Fig. 1b) appears to reflect the loss of some protons via dehydroxylation, with the consequent formation of condensed Keggin structures. Exposure to ambient moisture, however, led to full recovery of the initial spectra for H₅PV₂Mo₁₀O₄₀ clusters, indicating that dehydroxylation is reversible and does not lead to any significant destruction of the Keggin structures; this recovery is also expected to occur as water forms during CH₃OH oxidation catalysis. After CH₃OH oxidation reactions, catalysts showed very weak Raman bands, as a result of absorption of incident and scattered photons by color centers, which form as reactive intermediates during catalytic redox cycles. Treatment in dry air at 553 K and exposure to ambient moisture, however, led to the full recovery of the spectra for the respective fresh samples, indicating that supported Keggin structures do not restructure irreversibly during CH₃OH oxidation catalysis.

These Raman features and their evolution during thermal treatment are similar to those detected for $H_5PV_2Mo_{10}O_{40}$ clusters on TiO₂ (Fig. 1a and b) and to those reported previously for $H_5PV_2Mo_{10}O_{40}$ clusters on SiO₂ [8], except that no β -MoO₃ bands at ~ 852 cm⁻¹ appeared on SiO₂ supports (Fig. 1b) after treatment at 553 K. $H_5PV_2Mo_{10}O_{40}$ clusters on Al₂O₃ decomposed to two-dimensional MoO_x oligomers, as shown by the typical Raman band at 962 cm⁻¹ for terminal Mo=O stretching vibrations in MoO_x species, which shifted to 1001 cm⁻¹ (Fig. 1) upon dehydration at 553 K [20,21]. These differences reflect the varying degree of interaction of Keggin polyoxometallate clusters with each support.

The number of accessible protons in $H_5PV_2Mo_{10}O_{40}$ polyoxometallate structures was measured by titration with sterically hindered pyridine (2,6-di-*tert*-butyl pyridine) during catalytic CH₃OH reactions. 2,6-Di-*tert*-butyl pyridine titrant is protonated by Brønsted acids, but steric constraints prevent its coordination to Lewis acid sites via nitrogen lone electron pairs [22]. Saturation 2,6-di-*tert*-butyl pyridine uptakes reflect the number of accessible protons. The number of 2,6-di-*tert*-butyl pyridine molecules adsorbed during CH₃OH–O₂ reactions at 453 K on H₅PV₂Mo₁₀O₄₀/ZrO₂ (0.31 KU/nm²) increased with time during titration and reached saturation values of 0.92 per KU (Fig. 2). Saturation titrant uptakes are listed in Table 1 for H₅PV₂Mo₁₀O₄₀ supported on ZrO₂, TiO₂, and SiO₂; these saturation uptakes (0.86–1.24 per KU) are smaller than expected from the $H_5PV_2Mo_{10}O_{40}$ stoichiometry (5 per KU), apparently because dehydroxylation occurs among clusters and with support OH groups and because the dispersion of Keggin clusters on supports is incomplete. Titrant/KU values on SiO₂ are greater than on ZrO₂ and TiO₂, consistent with the strong interaction reported between Keggin structures and ZrO₂ and TiO₂ surfaces [10–12]; these lower proton densities also led to lower DME selectivities on ZrO₂ and TiO₂ than on SiO₂ during CH₃OH reactions (Table 1). $H_5PV_2Mo_{10}O_{40}$ clusters decomposed on Al₂O₃, leading to low densities of Brønsted acid sites on Al₂O₃ (0.4 H⁺/KU) (Table 1); the high DME selectivities observed reflect Lewis acid-catalyzed dehydration pathways on Al₂O₃ surfaces.

Titration of Brønsted acid sites by 2,6-di-*tert*-butyl pyridine during methanol reactions decreased the rates for both bifunctional DMM and monofunctional DME synthesis steps on $H_5PV_2Mo_{10}O_{40}/ZrO_2$; both rates reached nonzero constant values even after saturated 2,6-di-*tert*-butyl pyridine adsorption (0.92 per KU) (Fig. 2). These residual rates reflect the apparent ability of CH₃OH reactants to access

Fig. 2. Adsorption uptakes and rates for DME, HCHO, DMM, and MF formation as a function of time-on-stream during 2,6-di-*tert*-butyl-pyridine addition to $H_5PV_2Mo_{10}O_{40}/ZrO_2$ (0.31 KU/nm², 453 K, 4 kPa CH₃OH, 9 kPa O₂, CH₃OH/2,6-di-*tert*-butyl-pyridine (mol) = 1110).

protons within secondary structures that larger and less polar 2,6-di-tert-butyl pyridine molecules cannot readily reach. DME formation rates were influenced more strongly than DMM formation rates by titration with 2,6-di-tert-butyl pyridine on H₅PV₂Mo₁₀O₄₀/ZrO₂, as previously shown on H₅PV₂Mo₁₀O₄₀/SiO₂ [9]. This suggests that acid-catalyzed steps required for bifunctional DMM formation are near thermodynamic equilibrium in the proposed pathways for DMM and DME synthesis (Scheme 1). Bimolecular CH₃OH dehydration to DME remains far from equilibrium and it is therefore much more sensitive to the remaining number of Brønsted acid sites. The monofunctional and nonequilibrated nature of DME synthesis pathways and the different accessibility of methanol and hindered pyridine molecules provide an indirect method for measuring the degree of dispersion of polyoxometallate clusters on various supports. The fraction of the DME synthesis rates before titrant addition that remains after saturated adsorption by 2,6-di-tertbutyl pyridine provides a measure of inaccessible protons. These ratios are 0.085, 0.081, and 0.090 on ZrO₂, TiO₂, and SiO₂, respectively, suggesting that polyoxometallate H₅PV₂Mo₁₀O₄₀ clusters are dispersed to similar extents on these three supports. On Al₂O₃, DME formation rates were essentially independent of 2,6 di-tert-butyl pyridine adsorption, because DME forms preferentially on Lewis acid sites, which do not interact with 2,6 di-tert-butyl pyridine titrants. MF and HCHO formation rates also decreased to constant values as Brønsted acid sites were titrated (Fig. 2). The observed decrease in CH₃OH dehydrogenation rates indicates that replacement of H⁺ by electron-rich alkylpyridinium cations decreases the reducibility of polyoxometallate Keggin clusters. This is consistent with the expected electron transfer to Mo and V cations, which strengthens Mo-O and V-O bonds and decreases the extent to which electron density can be delocalized within oxide clusters during reduction processes required for catalytic cycles.

The role of supports on secondary reactions of the HCHO molecules formed in primary methanol oxidation reactions was examined by mixing supported $H_5PV_2Mo_{10}O_{40}$ catalysts with additional amounts of pure supports. As shown in Table 2, adding ZrO₂ to $H_5PV_2Mo_{10}O_{40}/SiO_2$ (3:1 mass ratio) at 493 K increased MF selectivity from 2.7 to 42.3%, while DMM selectivity decreased from 51.2 to 8.9%. The addition of TiO₂ to $H_5PV_2Mo_{10}O_{40}/SiO_2$ (3:1 mass ra-

Table 2

Methanol oxidation rates and selectivities on physical mixtures of $H_5PV_2Mo_{10}O_{40}/SiO_2 + ZrO_2$, $H_5PV_2Mo_{10}O_{40}/ZrO_2 + SiO_2$, and $H_5PV_2Mo_{10}O_{40}/SiO_2 + TiO_2$ at a mass ratio of 1/3, and for comparison on $H_5PV_2Mo_{10}O_{40}/SiO_2$ (0.28 KU/nm²) and $H_5PV_2Mo_{10}O_{40}/ZrO_2$ (0.31 KU/nm²) treated at 553 K (493 K, 4% CH₃OH, 9% O₂, 1% N₂, 30–40% CH₃OH conversion)

Catalyst (mass ratio)	Conversion rate (DME-free)	ODH rate	Selectivity (% carbon)				
	(molecules/(KU h))	(molecules/(KU h))	DME	HCHO	MF	DMM	CO_X
$H_5PV_2Mo_{10}O_{40}/SiO_2 + ZrO_2$ (1/3)	174.3	83.9	35.4	7.0	42.3	8.9	6.4
$H_5PV_2Mo_{10}O_{40}/ZrO_2 + SiO_2$ (1/3)	211.3	122.9	15.3	19.1	46.2	18.1	1.3
$H_5PV_2Mo_{10}O_{40}/SiO_2 + TiO_2 (1/3)$	164.7	83.4	33.3	14.5	29.2	17.8	5.2
H ₅ PV ₂ Mo ₁₀ O ₄₀ /SiO ₂	190.9	79.7	36.5	8.1	2.7	51.2	0
H5PV2Mo10O40/ZrO2	213.7	127.8	16.1	21.2	52.4	8.3	2.0

Fig. 3. CH₃OH conversion rates (on a DME-free basis) and selectivities as a function of residence time at 493 K on $H_5PV_2Mo_{10}O_{40}/ZrO_2$ (0.31 KU/nm², 4 kPa CH₃OH, 9 kPa O₂, 1 kPa N₂, CH₃OH conversion 18.6–65.8%).

tio) led to MF and DMM selectivities of 29.2 and 17.8% (vs 2.7 and 51.2% without TiO₂), respectively. Thus, ZrO₂ and TiO2 support surfaces can convert HCHO-CH3OH mixtures to MF, or possibly intercept reactive intermediates and convert them to MF before they condense with CH₃OH to form DMM on acidic sites on SiO₂ or Keggin clusters. The stronger effects of added ZrO2 relative to TiO2 are consistent with the higher MF selectivities obtained when ZrO₂ is used directly to support polyoxometallate clusters (Table 1). In contrast, when pure SiO₂ (3:1 mass ratio) was added to H₅PV₂Mo₁₀O₄₀/ZrO₂, DMM selectivities increased from 8.3 to 18.1%, indicating that SiO₂ surfaces direct HCHO-CH₃OH reactions toward DMM before dehydrogenation events leading to MF can occur. None of the experiments in which pure supports were mixed with supported H₅PV₂Mo₁₀O₄₀ catalysts led to detectable increases in the rates for oxidative dehydrogenation (ODH) of CH₃OH to HCHO (Table 2). The minor changes in CH₃OH conversion rates observed merely reflect the different reaction stoichiometries required for DMM and MF formation in secondary reactions of HCHO with CH₃OH (Scheme 1), the relative rates of which were influenced by the presence of the pure supports in these physical mixtures.

Fig. 3 shows the effects of reactant residence time, changed by varying the space velocity, on methanol conversion rates and selectivities at 493 K on $H_5PV_2Mo_{10}O_{40}/ZrO_2$ (0.31 KU/nm²). Rates decreased with increasing residence time and methanol conversion, as a result of reactant depletion and of weak kinetic inhibition effects by the water products formed during reaction. MF selectivities increased with increasing residence time and methanol conversion, so methanol conversion, consistent with the secondary nature of the reactions leading to its synthesis, while HCHO and DMM selectivities

Fig. 4. CH₃OH conversion rates (on a DME-free basis) and selectivities as a function of residence time at 493 K on $H_5PV_2Mo_{10}O_{40}/SiO_2$ (0.28 KU/nm², 4 kPa CH₃OH, 9 kPa O₂, 1 kPa N₂, CH₃OH conversion 21.3–47.6%).

concurrently decreased. This decrease in DMM selectivity appears to reflect the reversible nature of condensation reactions, which approach equilibrium as conversion increases with increasing residence time. CO_x selectivities remained very low (0-2.5%) at all conversion levels, but increased with increasing residence time, suggesting that CO_x forms preferentially via secondary reactions of HCHO, MF, and DMM products. DME selectivities were essentially unchanged by residence time, consistent with the formation of DME in parallel reactions and with its lower reactivity in HCHO formation reactions compared with CH₃OH reactants [8]. Fig. 4 shows similar residence time effects on $H_5PV_2Mo_{10}O_{40}/SiO_2$ (0.28 KU/nm²). On this catalyst, DMM selectivities increased monotonically with residence time, apparently because SiO₂ does not scavenge DMM or its methoxymethanol-type (CH₃OCH₂OH) intermediates via dehydrogenation reactions that form MF on ZrO₂ or TiO₂ supports. The trends with residence time for CH₃OH conversion rates and for selectivities to other products (HCHO, MF, CO_x , and DME) are similar on $H_5PV_2Mo_{10}O_{40}/SiO_2$ and $H_5PV_2Mo_{10}O_{40}/ZrO_2$.

DMM conversion to MF was confirmed by reactions of DMM–O₂ and CH₃OH–DMM–O₂ reactant mixtures on H₅PV₂Mo₁₀O₄₀/ZrO₂. Table 3 shows that addition of 2 kPa DMM to CH₃OH (4 kPa)/O₂ (9 kPa) reactants led to an increase in MF formation rates by \sim 1.7 at 493 K, indicating that reversible reactions of DMM during methanol oxidation indeed lead to MF formation, possibly via scavenging of methoxymethanol-type or hemiacetal intermediates (Scheme 1). DMM reactions also formed HCHO, CH₃OH, and DME, as expected from the reversible nature of condensation reaction during CH₃OH reactions on surfaces containing Brønsted acid sites. Table 3

MF formation rates and product selectivities in oxidation reactions of DMM (2 kPa), a DMM (2 kPa) and CH₃OH (4 kPa) mixture, and, for comparison, CH₃OH (4 kPa) on H₅PV₂Mo₁₀O₄₀/ZrO₂ (0.31 KU/nm², 493 K, 9% O₂, 1% N₂, 30–40% CH₃OH or DMM conversion)

Reactant	MF formation rate	Selectivity (%)						
	(MF molecules/(KU h))	CH ₃ OH	DME	HCHO	MF	DMM	CO_X	
СН3ОН	66.8	-	16.1	21.2	52.4	8.3	2.0	
DMM	89.2	28.1	14.3	17.6	39.7	_	0.2	
$DMM + CH_3OH$	112.4	-	-	-	-	-	-	

These observed effects of residence time and support on selectivities are consistent with the reaction pathways shown in Scheme 1. These pathways include primary reactions of CH₃OH to form DME and HCHO and secondary reactions of HCHO to form DMM and MF via methoxymethanol (CH₃OCH₃OH) or hemiacetal adsorbed intermediates. HCHO acetalization with nucleophilic methoxides (CH₃O⁻) forms CH₃OCH₂OH-type intermediates [14–16], which either condense with another CH₃OH molecule on acid sites to form DMM in equilibriumconstrained reactions or dehydrogenate to form MF in reactions favored by thermodynamics when O₂ is used to form H₂O.

A theoretical study has suggested that CH₃OCH₂OH dehydrogenation on V₂O₅ is the preferred MF synthesis path compared with the other two possible pathways: HCHO dimerization (Tischenko reaction) and CH₃OH reaction with adsorbed formate (HCOO⁻) intermediates [23]. CH₃OCH₂OH was not detected during CH₃OH reactions on H₅PV₂Mo₁₀O₄₀, because of its very reactive nature and its unfavorable thermodynamics. The rapid reactions of HCHO and CH₃OCH₂OH intermediates with CH₃OH make DMM and MF appear to behave as primary products, giving nonzero extrapolated selectivities at zero residence time (Figs. 3 and 4). The low measured CO_x selectivities (< 2.5%) allow us to exclude CO_x formation steps from our kinetic analysis of these reaction pathways. Previous DME oxidation kinetic measurements [8] suggest that secondary reactions of DME formed in CH₃OH reactions can also form HCHO, which subsequently converts to DMM and MF (Scheme 1). These reaction pathways (Scheme 1) require bifunctional pathways involving both redox and acid sites. Redox sites with active lattice oxygen atoms catalyze initial oxidative dehvdrogenation reactions of CH₃OH or DME to form HCHO and subsequent (oxidative or nonoxidative) dehydrogenation of CH₃OCH₂OH intermediates to form MF, while acid sites (H⁺) are involved in the formation of CH₃OCH₂OH intermediates and in their conversion to DMM, as well as in CH₃OH dehydration to form DME.

The effects of reaction temperature on CH₃OH conversion rates and selectivities are shown in Fig. 5. Rates increased from 58.6 to 373.7 molecules/(KUh) on $H_5PV_2Mo_{10}O_{40}/ZrO_2$ (0.31 KU/nm²) as the temperature increased from 453 to 513 K at similar CH₃OH conversions (30–40%; kept constant by varying residence time). HCHO and MF selectivities increased from 13.5 to 27.9% and from 42.5 to 52.4%, respectively, as temperature increased, while

Fig. 5. CH_3OH conversion rates (on a DME-free basis) and selectivities as a function of reaction temperature on $H_5PV_2Mo_{10}O_{40}/ZrO_2$ (0.31 KU/nm², 4 kPa CH_3OH , 9 kPa O_2 , 1 kPa N_2 , CH_3OH conversion 30–40%).

DMM selectivities decreased from 28.4 to 5.6%. These temperature effects indicate that rates of redox reactions (forming HCHO and MF) are more sensitive to temperature than net rates of DMM synthesis, possibly as a result of thermodynamic constraints for the latter reaction. Oxidative dehydrogenation of CH₃OH to HCHO is thermodynamically favorable ($\Delta G^0 = -186.4$ to -190.6 kJ/mol at 453 and 513 K) [1,24] and far from equilibrium. DMM and MF form via subsequent reactions of HCHO with CH₃OH via CH₃OCH₂OH intermediates (Scheme 1). The value of ΔG^0 for DMM formation,

$2CH_3OH + HCHO \leftrightarrow CH_3OCH_2OCH_3 + H_2O$,

decreased from -15.0 to -7.7 kJ/mol, and its equilibrium rate constant decreased sharply from 53.7 to 6.5 as temperature increased from 453 to 513 K; ΔG^0 values for DMM are not available and were estimated using density functional theory (B3LYP/6-31G*), while ΔG^0 values for all other compounds were obtained from the literature [24]. In contrast, MF formation,

 $CH_3OH + HCHO + \frac{1}{2}O_2 \leftrightarrow HCOOCH_3 + H_2O$,

is far from equilibrium ($\Delta G^0 = -242.7$ to -238.9 kJ/mol at 453–513 K). Higher temperatures thus favor the C–H bond activation in CH₃OH to HCHO, and the reactions of

Table 4

		= *						
Surface	Brønsted	Conversion rate	ODH rate		Selectivity (% carbon)			
density (KU/nm ²)	acid sites (H ⁺ /KU)	(DME-free) (molecules/(KU h))	(molecules/(KU h))	DME	НСНО	MF	DMM	CO _x
0	_	Trace	Trace	-	_	_	_	-
0.08	0.68	97.8	52.0	9.8	7.6	77.6	2.8	2.3
0.15	0.84	145.6	76.8	10.4	8.9	72.8	5.9	2.1
0.31	0.93	213.7	127.8	16.1	21.2	52.4	8.3	2.0

Methanol conversion rates (DME-free basis), selectivities, and number of accessible Brønsted acid sites as a function of H₅PV₂Mo₁₀O₄₀ surface density on ZrO₂ (493 K, 4% CH₃OH, 9% O₂, 1% N₂, 30–40% CH₃OH conversion)

DMM and CH₃OCH₂OH intermediates to HCHO, CH₃OH, and MF instead of DMM. This leads to the lower DMM selectivities and higher HCHO and MF selectivities observed as temperature increases. Selectivities to by-products DME (~ 15%) and CO_x (< 2.2%) were only weakly affected by reaction temperature (Fig. 5).

A parallel study addressed the effects of H₅PV₂Mo₁₀O₄₀ surface density on catalytic properties. Table 4 shows that methanol conversion and ODH rates (per KU) increased by factors of 2.2 and 2.5, respectively, as the surface density of Keggin units increased from 0.08 to 0.31 KU/nm^2 . In this surface density range, the fractions of initial DME synthesis rates remaining after 2.6 di-tert-butyl pyridine saturation are similar for all samples (0.081-0.087), suggesting that the extent of exposure to reactants is also independent of surface density. Thus, the higher reaction rates (per KU) observed with increasing surface density reflect a higher reactivity of polyoxometallate clusters as the domain size of two-dimensional agglomerates of polyoxometallate clusters increased with increasing surface density. The larger domains prevalent at higher surface densities appear to undergo faster redox cycles required for methanol oxidation than the isolated or small domains at lower surface density, as also found for simple oxide domains of MoO_x and VO_x [9,21,25]. MF selectivities decreased from 77.6 to 52.4% as the polyoxometallate surface densities increased, apparently because the ratio of exposed ZrO₂ to polyoxometallate surfaces decreased, leading to smaller contributions from ZrO₂-catalyzed MF synthesis pathways. The number of accessible Brønsted acid sites (H⁺), estimated by the saturated 2,6-tert-butyl pyridine uptakes, increased slightly from 0.68 to $0.93 \text{ H}^+/\text{KU}$ as the surface density increased from 0.08 to 0.31 KU/nm^2 . This led to the observed concurrent increase in DME and DMM selectivities (Table 4), consistent with the acid sites required for their respective formation.

4. Conclusions

 $H_5PV_2Mo_{10}O_{40}$ polyoxometallate Keggin clusters supported on ZrO₂, TiO₂, SiO₂, and Al₂O₃ catalyze CH₃OH oxidation reactions to form HCHO, DMM, and MF. These Keggin structures remain essentially intact on ZrO₂, TiO₂, and SiO₂ after treatment in air at 553 K, but decompose to MoO_x and VO_x oligomers on Al₂O₃. For similar KU surface densities (0.28–0.37 KU/nm²), the number of accession

sible protons is larger on SiO₂ than on ZrO₂ and TiO₂ and much smaller on Al₂O₃ supports. These effects of support on structure and H⁺ accessibility reflect varying extents of interaction between polyoxometallate clusters and supports. Rates of CH₃OH oxidative dehydrogenation per KU are higher on ZrO2 and TiO2 than on SiO2 at similar KU surface densities (0.28-0.37 KU/nm²) and dispersions, indicating that redox properties and catalytic reactivity of Keggin clusters depend on their atomic attachment to specific support surfaces. Rates are much lower on Al₂O₃, because structural degradation leads to less reactive MoO_x and VO_x domains. CH₃OH undergoes primary oxidation to form HCHO and subsequent secondary reactions to form DMM and MF via methoxymethanol (CH3OCH2OH) intermediates in steps requiring the bifunctional acid and redox sites; DME forms in parallel pathways catalyzed by acid sites. The identity of the support strongly influences the secondary reaction pathways leading to DMM and MF. Amphoteric or dehydrogenating surfaces on ZrO₂ and TiO₂ lead to MF formation, while DMM formation is favored by the presence of acidic SiO₂ surfaces. The lower DME selectivities on ZrO₂ and TiO₂ than on SiO₂ are consistent with fewer H^+ sites per KU on ZrO_2 and TiO_2 than on SiO_2 , as measured by titration with 2,6 di-*tert*-butyl pyridine during CH₃OH reactions. Al₂O₃ supports lead to DME as the dominant product because of the available Lewis acid-catalyzed dehydration pathways on Al₂O₃ surfaces and the low reactivity of MoO_x and VO_x domains.

Acknowledgments

This work was supported in part by BP as part of the Methane Conversion Cooperative Research Program at the University of California at Berkeley and by the Director, Office of Basic Energy Sciences, Chemical Sciences Division, of the U.S. Department of Energy under Contract DE-AC03-76SF00098. The authors thank Ms. Patricia Cheung for the ΔG^0 estimates for DMM. The authors also acknowledge helpful technical discussions with Dr. Theo Fleisch of BP.

References

- [1] J.M. Tatibouet, Appl. Catal. 148 (1997) 213.
- [2] T. Okuhara, N. Mizuno, M. Misono, Adv. Catal. 41 (1994) 113.
- [3] M. Misono, J. Chem. Soc. Chem. Commun. (2001) 1141.

- [4] C.M. Sorensen, R.S. Weber, J. Catal. 142 (1993) 1.
- [5] C. Rocchiccioli-Deltcheff, A. Aouissi, S. Launay, M. Fournier, J. Mol. Catal. 114 (1996) 331.
- [6] C. Rocchiccioli-Deltcheff, A. Aouissi, M.M. Bettahar, S. Launay, M. Fournier, J. Catal. 164 (1996) 16.
- [7] K. Buckman, J.M. Tatibouet, M. Che, E.M. Serwicka, J. Haber, J. Catal. 139 (1993) 455.
- [8] H. Liu, E. Iglesia, J. Phys. Chem. B 107 (2003) 10840.
- [9] H. Liu, N. Bayat, E. Iglesia, Angew. Chem. Int. Ed. 42 (2003) 5072.
- [10] S. Damyanova, L.M. Gomez Sainerro, J.L.G. Fierro, Chem. Mater. 12 (2000) 501.
- [11] S. Damyanova, J.L.G. Fierro, Chem. Mater. 10 (1998) 871.
- [12] P.G. Vazquez, M.N. Blanco, C.V. Caceres, Catal. Lett. 60 (1999) 205.
- [13] H. Liu, P. Cheung, E. Iglesia, J. Catal. 217 (2003) 222.
- [14] C. Louis, J.M. Tatibouet, M. Che, J. Catal. 109 (1988) 354.
- [15] I.E. Wachs, R.J. Madix, Surf. Sci. 76 (1978) 531.

- [16] J.M. Tatibouet, H. Lauron-Pernot, J. Mol. Catal. A 171 (2001) 205.
- [17] A.N. Desikan, W. Zhang, S.T. Oyama, J. Catal. 157 (1995) 740.
- [18] G. Deo, I.E. Wachs, J. Catal. 146 (1994) 323.
- [19] G. Mestl, T. Ilkenhans, D. Spielbauer, M. Dieterle, O. Timpe, J. Krohnert, F. Jentoft, H. Knozinger, R. Schlogl, Appl. Catal. A 210 (2001) 13.
- [20] G. Mestl, T.K.K. Srinivasan, Catal. Rev. Sci. Eng. 38 (1998) 451.
- [21] K. Chen, S. Xie, A.T. Bell, E. Iglesia, J. Catal. 198 (2001) 232.
- [22] J.G. Santiesteban, J.C. Vartuli, S. Han, R.D. Bastian, C.D. Chang, J. Catal. 168 (1997) 431.
- [23] J. Sabeth, A. Juan, L. Gambaro, H. Thomas, J. Mol. Catal. A 118 (1997) 283.
- [24] D.R. Stull, F. Edgar, J. Westrum, G.C. Sinke, in: The Chemical Thermodynamics of Organic Compounds, Robert E. Krieger, Malabar, FL, 1987.
- [25] H. Liu, P. Cheung, E. Iglesia, Phys. Chem. Chem. Phys. 5 (2003) 3795.