NO_x-Mediated Homogeneous Pathways for the Synthesis of Formaldehyde from CH₄-O₂ Mixtures

Jeffrey M. Zalc, William H. Green,[†] and Enrique Iglesia*

Department of Chemical Engineering, University of California at Berkeley, Berkeley, California 94720, and Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

A detailed kinetic network for homogeneous $CH_4-O_2-NO_x$ reactions is used to estimate maximum attainable formaldehyde (and methanol) yields and to identify elementary steps that lead to the observed enhancement effects of NO_x on CH₄ oxidation rates, to HCHO yield limits, and to NO_x losses to unreactive N-compounds. NO_x was shown previously to increase CH_4 oxidation rates and HCHO yields in CH_4-O_2 reactions, but maximum yields were low (<10%) and intrinsic kinetic limits were not rigorously examined. We show here that the CH₄ oxidation rate increases because NO₂ reacts with CH₄ during an initial induction period. NO and NO_2 lead to similar effects, except that residence times required for a given yield are higher for NO feeds because NO-NO₂ interconversion must first occur. CH₄ leads to supra-equilibrium NO₂ concentrations because HO₂ formed during HCHO oxidation reacts with NO to form OH and NO₂ faster than NO₂ can decompose to NO. Oxygenate selectivities decrease with increasing CH₄ conversion, because weaker C-H bonds in HCHO and CH₃OH relative to CH₄ lead to their fast sequential oxidation to CO and CO₂. Rate-of-formation analyses show that NO_x molecules introduce more effective elementary steps for the formation of CH₃O intermediates and for its conversion to HCHO, but H-abstraction from CH4 and HCHO remains the predominant step in controlling rates and selectivities in the presence or absence of NO_x . Without NO_x , OH radicals account for all H-abstraction reactions from CH₄, while HCHO reacts with OH but also with less reactive H and HO₂ radicals. NO_x increases HCHO yields by converting these less reactive H and HO₂ radicals to OH radicals, which become the predominant H-abstractor for both CH₄ and HCHO and which react less selectively with HCHO than do H and HO₂. Kinetic selectivity, based on C-H bond energy differences between CH_4 and HCHO, becomes weaker with increasing radical reactivity and increasing reaction temperature. Maximum HCHO yields of 37% are theoretically possible for radicals that abstract H from CH₄ and HCHO at equal rates, but radical species prevalent during $CH_4 - O_2 - NO_x$ reactions lead to maximum HCHO yields below 10% under all conditions. Higher yields appear unlikely with more reactive radicals, because their reactivity would lead to cascade reactions that form species with greater kinetic sensitivity to C-H bond energies. Maximum C_1 -oxygenate yields increase with increasing O_2 pressure, suggesting that the O_2 distribution along a reactor will not improve HCHO yields but may prove useful to inhibit NO_x losses to less reactive N-compounds.

1. Introduction

The practical conversion of remote natural gas reserves to transportable liquid fuels and chemicals requires multiple steps and synthesis gas intermediates.^{1–3} Direct routes may be able to decrease process complexity and capital costs and improve energy efficiency. Oxidative coupling (OCM) to form ethane/ ethene⁴ is currently impractical because desired C₂ products react further to form CO and CO₂.^{5–8} CH₄–O₂ mixtures form HCHO and CH₃OH with low yields (4–7%) on heterogeneous catalysts,^{9–14} and homogeneous pathways at high pressures (5–20 MPa O₂) and low temperatures (600–700 K) give only slightly higher yields.¹⁵

NO added to CH₄–O₂ reactants increased CH₄ conversion rates and C₁-oxygenate yields on V₂O₅/SiO₂ at 850–950 K,¹⁶ as also reported for homogeneous reactions;¹⁷ these homogeneous pathways may avoid undesired HCHO decomposition on even "inert" surfaces.^{18–20} Otsuka et al.²¹ reported ~4% C₁oxygenate yields in homogeneous NO–CH₄–O₂ reactions under conditions that did not form detectable products without NO (873 K, 20 kPa CH₄, 10 kPa O₂, 2 kPa NO) and achieved 6.5% HCHO yields after optimization (873 K, 5 kPa CH₄, 2.5 kPa O_2 , 0.5 kPa NO).²² NO is relatively unreactive but forms NO₂ by reaction with O_2 , and NO₂ reacts more rapidly with oxygenates than with CH₄,²³ suggesting that direct reactions of NO₂ cannot account for the observed yield enhancements.

Here, we describe a kinetic network for NO_x-mediated homogeneous pathways and explore intrinsic limits on oxygenate yields and routes for NO_x losses to unreactive N-compounds. We use this homogeneous network to probe optimal conditions and process feasibility. The network used builds on CH_4-O_2- NO_x studies addressing NO_x formation during combustion^{24–29} by extending GRI-Mech²⁴ to include oxygenate synthesis in $CH_4-O_2-NO_x$ mixtures and expanding previous studies of NO_x-mediated oxygenate synthesis.³⁰ In the process, we examine specific steps responsible for the rate and yield enhancements by NO_x.

CH₄ conversion to HCHO and CO_x occurs sequentially via steps influenced by NO_x concentration. H-abstractions from CH₄ and HCHO are the kinetically relevant steps in determining HCHO yields. We find that C-H activation in CH₄ occurs almost exclusively by reactions with OH, but HCHO activation involves H, HO₂, and OH radicals. NO_x increases HCHO yields via chain cycles that convert H and HO₂ to more reactive OH radicals. These OH radicals activate C-H bonds less selectively than H or HO₂ and minimize the kinetic preference for weaker C-H bonds in HCHO. CH₄-O₂-NO mixtures lead to NO₂ levels well above those expected from NO-O₂ equilibrium. NO

^{*} To whom correspondence should be addressed. E-mail: iglesia@ cchem.berkeley.edu.

[†] Massachusetts Institute of Technology.

Table 1. Comparison of Simulation Results with Experimental Data from Figure 2 (of ref 30) for C-Selectivities for HCHO, CH₃OH, CO, CO₂, and CH₃NO₂ at Several Reaction Temperatures and CH₄ Conversions^{*a*}

Selectivity (%)												
		НСНО		CH ₃ OH		СО		CO ₂		CH ₃ NO ₂		
$T(\mathbf{K})$	CH ₄ conversion (%)	simulation	data ³⁰	simulation	data ³⁰	simulation	data ³⁰	simulation	data ³⁰	simulation	data ³⁰	
748	0.7	82.5	57	4.3	12	9.6	14	0.1	2	3.5	b	
773	3.2	60.5	32	4.8	10	30.1	43	1.0	2	3.5	12	
798	7.5	40.0	25	5.1	7	49.1	55	2.3	3	3.4	10	
803	10	32.0	22	5.1	6	56.6	60	2.6	3	3.4	9	
823	35	1.7	5	0.4	b	78.4	77	12.7	9	1.3	1	

^a Data are compared at the same CH₄ conversion, and selectivities are defined on the basis of CH₄ reacted. ^b Data point could not be extracted accurately from Figure 2 in ref 30.

and NO₂ effects on CH₄ $-O_2$ reactions are similar, except for a direct role of NO₂ in chain initiation, which leads to shorter residence times. CH₃NO₂, N₂O, and N₂ form during reaction at residence times required to achieve maximum HCHO yields; these N-losses preclude complete recycling of NO_x in practical processes.

2. Simulation Methods

2.1. Base Mechanism and Modifications. A previous study³⁰ used GRI-Mech (v. 2.1.1)²⁴ modified by removing several N-containing species and their reactions and then inserting NO_x, HONO, HONO₂, CH₃NO₂, CH₃ONO, CH₂NO₂, CH₃NO, CH₃OO, and CH₃OOH reactions. Here, we use GRI-Mech (v. 3.0) and extend it by adding the reactions in ref 30 not already present in GRI-Mech (v. 3.0). The reaction network contains 65 species and 419 elementary steps. Thermodynamics for species not included in GRI-Mech (v 3.0) were extracted from the CHEMKIN Thermodynamic Database. The full kinetic network and related thermodynamic data are available in CHEMKIN format.³¹

2.2. Reactor Simulations. CHEMKIN 4.0 (Reaction Design. Inc.) was used together with a Fortran code to describe an isothermal and isobaric reactor with plug-flow hydrodynamics. "C1-oxygenates" denotes the combined HCHO and CH3OH products. Yield is defined as the percentage of the inlet CH₄ stream that is converted to each product. Peak or maximum yields denote the highest yield attained along a reactor. Selectivities are reported as the CH₄ converted only to HCHO and CO_x (CO and CO_2); they exclude trace C_{2+} products, except for comparisons with experiments (section 3.1), for which all products are reported. Nitrogen selectivities are reported as the percentage of the inlet NO_x appearing as each product. Pathways for formation and conversion of each species were probed using rate-of-formation analysis.³² A heuristic sequential scheme (section 3.5) was used to interpret simulations; simulations reflect in all cases the complete kinetic network. This simple scheme uses first-order phenomenological rate constants to describe CH₄ to HCHO (k_1) and HCHO to CO_x (k_2) reactions. The ratio k_1/k_2 reflects the relative rates of HCHO synthesis and conversion and influences maximum HCHO yields attainable as CH₄ conversion increases with residence time.

3. Results and Discussion

3.1. Validation of Kinetic Model and Simulations. Table 1 compares simulated HCHO, CH₃OH, CO, CO₂, and CH₃NO₂ selectivities with experimental values at various CH₄ conversions³⁰ (55.6 kPa CH₄, 27.7 kPa O₂, 0.5 kPa NO) for experiments conducted at constant inlet molar rates and increasing temperature. Simulations were carried out at each temperature, but experimental conversions were matched in the simulations

Figure 1. CH₄ conversion and HCHO and CH₃OH yields as a function of reactor residence time at 873 K for reactants with 50 kPa CH₄, 50 kPa O₂, and 0 kPa NO_x (-) or 5 kPa NO (- - -).

by letting residence times vary. Simulations and data agree relatively well and show the expected decrease in HCHO selectivity with increasing CH₄ conversion; they are also in qualitative agreement with previous reports.³⁰ This reaction network is used below to probe the mechanistic basis for the effects of NO and NO₂ on CH₄ conversion and C₁-oxygenate yields.

3.2. Simulations of NO_x Effects on C₁-Oxygenate Yields. Figure 1 shows that NO (5 kPa) in CH₄-O₂ streams (50 kPa CH₄, 50 kPa O₂) increases maximum C₁-oxygenate yields at 873 K and decreases residence times required for a given CH₄ conversion by shortening the induction periods prevalent in CH₄-O₂ reactions. The maximum C₁-oxygenate yield is 2.7% without NO and is reached at 6.8 s of residence time and 20.3% CH₄ conversion. With 5 kPa NO, the maximum yield is 4.7%; it is reached at 0.4 s and 16.1% CH₄ conversion. NO appears to provide or promote initiation pathways. HCHO and CH₃OH maximum yields occur at similar residence times, and HCHO is the predominant oxygenate formed (~85% without NO; ~94% with 5 kPa NO).

The effects of NO and NO₂ pressures on CH_4-O_2 reactions (50 kPa CH₄, 50 kPa O₂) are shown in Table 2. Maximum C₁-oxygenate yields occur at shorter residence times with NO₂ than with NO. With NO, CH₄ activation can occur via reactions with NO₂, which forms rapidly during reaction. Maximum C₁-oxygenate yields and HCHO/CH₃OH ratios are similar with NO and NO₂. NO₂ and NO have identical kinetic consequences, but NO₂ leads to faster initiation; in fact, product selectivities and CH₄ conversion profiles along the reactor become identical with NO and NO₂ when one of them is shifted by a constant residence time (Table 2).

Molecular simulations^{33,34} have shown that NO₂ abstracts H-atoms from CH₄ more effectively than NO or O₂. Activation

Table 2. Peak C₁-oxygenate Yields and Required Residence Times, CH₄ Conversions, and HCHO and CH₃OH Yields at Various NO and NO₂ Inlet Pressures^a

NO _x pressure (kPa)	peak C ₁ -oxygenate yield (%)	residence time (s)	CH_4 conversion ^b (%)	HCHO yield ^b (%)	CH ₃ OH yield ^b (%)
0	2.7	6.8	20.3	2.3	0.5
0.1 (NO)	2.8	4.6	17.8	2.4	0.5
0.1 (NO ₂)	2.8	1.1	17.8	2.4	0.5
1 (NO)	4.8	1.4	17.8	4.3	0.5
1 (NO ₂)	4.8	0.6	17.4	4.3	0.5
2 (NO)	4.8	0.9	17.5	4.4	0.4
2 (NO ₂)	4.8	0.5	17.5	4.4	0.4
5 (NO)	4.7	0.4	16.1	4.5	0.3
5 (NO ₂)	4.6	0.3	18.1	4.3	0.3

^a Conditions: 873 K, 50 kPa CH₄, 50 kPa O₂, no diluent. ^b At the residence time leading to the peak C₁-oxygenate yield.

Figure 2. HCHO yields (a), CH_3OH yields (b), CH_4 conversions (c), and required reactor residence times (d) as a function of reaction temperature and inlet NO pressure. All data are shown for residence times leading to the peak total C_1 -oxygenate yield at each temperature and NO pressure (50 kPa CH_4 , 50 kPa O_2 , no diluent).

barriers were 65.6 and 37.6 kcal/mol for NO and NO₂, respectively, and 59.0 kcal/mol for O₂. At ambient pressure and 873 K²² or 1200 K,³⁵ CH₄–NO mixtures did not react, as also found in our simulations for equimolar NO–CH₄ mixtures at 873 K and up to 5 ks of residence time. Simulations with NO₂– CH₄ mixtures, however, showed 35% CH₄ conversion at 1.6 s with 70, 19, 8, and 11% selectivities to CO₂, CO, HCHO, and CH₃NO₂. The differences between CH₄–O₂–NO and CH₄–O₂–NO arely reflect the time required to form NO₂ in the case of CH₄–O₂–NO mixtures (section 3.9).

Predicted maximum C₁-oxygenate yields and the residence times required to achieve them are shown in Figure 2 at 800– 1200 K and 0–8 kPa inlet NO pressure (50 kPa CH₄, 50 kPa O₂). Maximum HCHO yields increased with temperature, because stronger C–H bonds in CH₄ require higher activation energies than weaker C–H bonds in HCHO (or CH₃OH). HCHO yields increased with increasing NO pressure. Experiments at 873 K and ambient pressure with 5.0 kPa CH₄, 2.5 kPa O₂, and 0.5 kPa NO gave a HCHO/CH₃OH ratio of 32,²² while simulations predict a value of 38 at these conditions. Peak oxygenate yields occur at intermediate CH₄ conversions (10–25%; Figure 2c), because HCHO converts to CO_x in sequential reactions as residence time increases. Residence times required for maximum C₁-oxygenate yields decreased with increasing temperature and NO pressure (Figure 2d).

The observed decrease in HCHO yields with increasing residence time (Figure 1) resembles that for homogeneous and catalytic CH_4-O_2 reactions^{20,23,36,37} (e.g., oxidative coupling^{5,8,38}). Prevalent secondary reactions reflect the more reactive nature of the desired products (HCHO, C₂H₄, C₂H₆) compared with CH₄ reactants. HCHO and CO_x selectivities are shown in Figure 3 at 873 K as a function of the CH₄ conversion

Figure 3. HCHO and CO_x selectivities as a function of CH₄ conversion for reactants with 0 kPa NO_x (-), 5 kPa NO (- -), or 5 kPa NO₂ (- - -). Selectivities are based only on the HCHO and CO_x products formed (873 K, 50 kPa CH₄, 50 kPa O₂, no diluent).

and residence time for CH_4-O_2 mixtures (50 kPa CH₄, 50 kPa O₂) and NO_x pressures of 0 and 5 kPa. HCHO selectivities are $\sim 100\%$ when extrapolated to zero CH₄ conversion. NO and NO₂ increase HCHO yields by inhibiting selectivity losses caused by secondary reactions.

3.3. Pathways for HCHO Synthesis and Consumption with and without NO_x . Next, we discuss the effects of NO_x on specific elementary steps involved in HCHO synthesis and oxidation. Rate-of-formation analysis can be used to identify species and steps responsible for HCHO formation and conversion and the influence of NO_x on such steps. The evolution of the most abundant carbon-containing radicals and of all stable molecules proceeds via

$$CH_4 \rightarrow CH_3 \rightarrow CH_3O \rightarrow HCHO \rightarrow HCO \rightarrow CO \rightarrow CO_2$$
(1)

with CH₃NO₂, formed via reactions of CH₃ with NO₂, and CH₃OH, formed from CH₃O, as minor side reactions. H-addition to CH₃O from H₂ or CH₄ forms more than 90% of all CH₃OH molecules. The sequential nature of the reactions in eq 1 has been proposed for CH₄–O₂ and CH₄–O₂–NO_x reactants,^{27,29,36,39} but detailed contributions and the relative kinetic relevance of the various elementary steps involved remain unclear.

Figures 4 and 5 show rate-of-formation data for CH₄ and HCHO, respectively, including steps that form or convert > 2% of all CH₄ and HCHO. Without NO_x, CH₄-O₂ reactions proceed mostly (>90%) via H-abstraction from CH₄ using OH radicals (Figure 4a):

$$OH + CH_4 = CH_3 + H_2O \tag{2}$$

with small contributions from H-abstraction by H radicals. With NO (5 kPa NO; Figure 4b), H-abstraction by OH also accounts for >90% of the CH₄ converted; abstraction by NO₂ (formed from NO) is involved in \sim 4% of CH₄ conversion events:

$$NO_2 + CH_4 = CH_3 + HONO$$
(3)

Reaction 3, however, provides an efficient route for activating C–H bonds during the initial induction period,^{40–42} consistent with the shorter induction observed when NO₂ is used instead of NO; NO forms NO₂ during CH₄–O₂–NO reactions only after a finite residence time. Two maxima in CH₄ conversion rates

Figure 4. Rate-of-formation analysis for CH_4 for reactants with 0 kPa NO_x (a) or 5 kPa NO (b) (873 K, 50 kPa CH_4 , 50 kPa O_2 , no diluent).

occur with NO (5 kPa NO; at ~0.4 s and ~2.7 s); the latter one reflects CH₃O dissociation to HCHO and H, as NO_x is depleted with increasing residence time.

The elementary steps that convert CH_3 to CH_3O depend on the NO_x concentration. Without NO_x, CH_3O forms predominantly (>99%) via

$$HO_2 + CH_3 = CH_3O + OH \tag{4}$$

which converts HO₂ into reactive OH radicals; OH abstracts H-atoms from CH₄ about 10^5 times faster than HO₂ (at 873 K). With NO (5 kPa), most of the HO₂ forms OH by reacting with NO, reaction (20), a step that accounts for ~80% of the OH formed. With the resulting low [HO₂] and high [NO₂], ~97% of the CH₃O is formed by reaction (5):

$$NO_2 + CH_3 = CH_3O + NO$$
(5)

Simulations of NO_x abatement by reburning suggest that CH₃O forms via NO₂-CH₃ reactions at 750-1250 K;²⁷ these steps involve NO₂ formed via NO-NO₂ interconversion in CH₄-O₂ mixtures (section 3.9). Thus, the elementary steps responsible for CH₃ conversion to CH₃O depend on NO_x concentrations, as discussed in section 3.4.

HCHO formation rates are shown in Figure 5 at 873 K for equimolar CH_4-O_2 mixtures with 0 kPa (a) and 5 kPa (b) NO. Without NO, HCHO forms predominantly via

$$CH_3O = HCHO + H \tag{6}$$

$$O_2 + CH_3O = HCHO + HO_2$$
(7)

These steps account for 95% of the HCHO molecules formed.

Figure 5. Rate-of-formation analysis for HCHO for reactants with 0 kPa NO_x (a) or 5 kPa NO (b) (873 K, 50 kPa CH₄, 50 kPa O₂, no diluent).

NO (5 kPa) introduces two other routes for CH_3O conversion to HCHO (Figure 5b):

$$NO + CH_3O = HCHO + HNO$$
(8)

$$NO_2 + CH_3O = HCHO + HONO$$
(9)

which account for 22% and 5%, respectively, of all HCHO formed. Tabata et al.^{17,34} suggested that NO_x provides faster routes for CH₃O conversion to HCHO. Figure 5b shows that after most NO_x and O₂ molecules are converted, CH₃O dissociation forms H radicals (at ~2.7 s of residence time); H radicals then convert directly to OH via reactions with NO₂ or combine with O₂ to form HO₂, which, in turn, forms OH by reactions with NO. These paths to OH radicals lead to the increase in CH₄ conversion rates shown in Figure 4b.

HCHO is the desired intermediate within sequential CH₄ oxidation reactions that ultimately form CO and CO₂. Thus, strategies for increasing HCHO yields require that we also understand HCHO oxidation pathways. Without NO_x (Figure 5a), HCHO is consumed predominantly via

$$OH + HCHO = HCO + H_2O$$
(10)

$$H + HCHO = HCO + H_2$$
(11)

$$HO_2 + HCHO = HCO + H_2O_2$$
(12)

which account for 46, 24, and 19% of all the HCHO consumed. With 5 kPa NO (Figure 5b), reactions 10-12 account for 68, 19, and 2%, indicating that NO_x increases HCHO yields by converting H and HO₂ to OH radicals, which react less selectively with HCHO (vs CH_4) than H or HO₂. Figure 5b also shows that

$$NO_2 + HCHO = HCO + HONO$$
 (13)

accounts for 15% of all the HCHO consumed. NO₂, however, also introduces other HCHO conversion routes. HCHO formation rates up to the residence times required for maximum C₁-oxygenate yields (Figure 5a; 0 kPa NO_x) indicate that reactions 10-12 account for 43, 13, and 27% of HCHO consumption. With NO (5 kPa; Figure 5b), 82, 3, 0.1, and 15% of HCHO conversion occurs via reactions 10-13, respectively. NO_x increases HCHO yields by inhibiting HCHO reactions, through a shift in the radical pool to OH at the expense of H and HO₂ radicals, which are much less effective in activating the C–H bonds in CH₄ than those in HCHO.

This rate-of-formation analysis can identify relevant synthesis and destruction pathways for HCHO in CH_4-O_2 and $CH_4-O_2-NO_x$ mixtures, but it cannot quantify HCHO yield enhancements with NO_x in terms of specific kinetically-relevant steps or of rate constants for simpler reaction sequences. We describe next sensitivity analysis methods to identify those steps with the strongest influence on maximum HCHO yields.

3.4. Sensitivity of Peak HCHO Yields to Rate Constants of Elementary Steps. The sensitivity of maximum HCHO yields $[Y_{\text{HCHO}}(\tau_{\text{peak}})]$ to the rate constant for the *i*th elementary step, k_i , is⁴³

$$S_i = \frac{d(\ln(Y_{\text{HCHO}}(\tau_{\text{peak}})))}{d(\ln(k_i))}$$
(14)

 S_i is the (fractional) change in the maximum HCHO yield for a given (fractional) change in k_i . Positive values indicate that maximum HCHO yields increase with increasing k_i . A k_i change of 0.1 was used to estimate S_i . We note that residence times for maximum HCHO yields, τ_{peak} , vary slightly as rate constants are perturbed.

Figure 6 shows the 10 elementary steps with the greatest value of S_i (at 873 K, 50 kPa CH₄, 50 kPa O₂) with 0 kPa (a) or 5 kPa (b) NO. Without NO_x, maximum HCHO yields depend most sensitively on H-abstraction from CH₄ and HCHO by OH. CH₃—HO₂ reactions to form CH₃O and OH (reaction 4) also have positive effects on HCHO yields. Figure 6a shows negative S_i values for H-abstraction from HCHO, specifically by H (reaction 11) and HO₂ (reaction 12). Termination steps, such as HO₂ recombination to form H₂O₂ and O₂ or CH₃ recombination to give C₂H₆, also decrease maximum HCHO yields. With 5 kPa NO (Figure 6b), the highest S_i values were also for H-abstraction from CH₄ and HCHO by OH radicals, showing that NO_x-assisted rates for CH₃ conversion to CH₃O and for CH₃O conversion to HCHO do not introduce detectable kinetic bottlenecks.

3.5. Kinetic Basis for HCHO Yield Improvements by NO_x. CH₄ conversion to HCHO and then to CO_x occurs via a complex reaction network, which can be described qualitatively by

$$CH_4 \xrightarrow{k_1} HCHO \xrightarrow{k_2} CO_x$$
 (15)

where k_1 and k_2 are phenomenological pseudo-first-order rate constants for the CH₄ to HCHO and HCHO to CO_x conversions, respectively. These k_1 and k_2 rate constants reflect complex contributions from intervening radicals, whose concentrations and kinetic contributions vary as the reaction proceeds and as NO_x concentrations change along a reactor. The ratio of these

Figure 6. Sensitivity analysis results showing elementary steps whose rate constants most strongly influence peak HCHO yields for reactants with 0 kPa NO_x (a) or 5 kPa NO (b). As defined in eq 14, S_i is the fractional change in the peak HCHO yield relative to the fractional change in the rate constant of elementary step *i* (873 K, 50 kPa CH₄, 50 kPa O₂, no diluent).

rate constants (k_1/k_2) determines the maximum attainable HCHO yields. Mole balances for CH₄ and HCHO based on the reaction sequence in eq 15 give the local ratio of these pseudoconstants:

$$\frac{k_2}{k_1} = \left(\frac{\mathrm{d(ln[HCHO])}}{\mathrm{d(ln[CH_4])}} + \frac{\mathrm{[CH_4]}}{\mathrm{[HCHO]}}\right) \tag{16}$$

from our simulations and allow us to examine the effects of NO and NO₂ concentrations on this ratio. Values of k_1 can be obtained from CH₄ conversion and the partial pressure at each residence time:

$$k_1 = -\frac{1}{[CH_4]} \frac{d[CH_4]}{dt} = -\frac{d(\ln[CH_4])}{dt}$$
(17)

HCHO yields, k_1/k_2 ratios, and k_1 values are shown as a function of CH₄ conversion in Figure 7 for CH₄–O₂, CH₄–O₂–NO, and CH₄–O₂–NO₂ mixtures at 873 K. The k_1/k_2 ratios (Figure 7a) are higher when NO_x is present, consistent with the higher maximum HCHO yields achieved when NO_x is present in the inlet stream (Figure 7b). The k_1/k_2 ratios increase with increasing CH₄ conversion, because radical intermediates increase in concentration and form HCHO; ultimately, radical concentrations decrease because O₂ depletion influences HCHO formation more strongly than its conversion. For CH₄ conversions below 25%, NO_x increases the pseudo-first-order rate constants for CH₄ conversion (Figure 7c) and k_1 values are greater for NO₂ than for NO. NO and NO₂ show similar effects on k_1/k_2 ratios (Figure 7a) and HCHO yields (Figure 7b), but NO₂ shortens induction periods more effectively than NO.

Figure 7. Simulation results for local k_1/k_2 values (a), HCHO yields (b), and k_1 (c) as a function of CH₄ conversion for reactants with 0 kPa NO_x (-), 5 kPa NO (- -), or 5 kPa NO₂ (--) (873 K, 50 kPa CH₄, 50 kPa O₂, no diluent).

Maximum HCHO yields reflect k_1/k_2 ratios, while k_1 depends mostly on OH levels, because reaction 2 accounts for most CH₄ activation events (except ~4% from H-abstraction by NO₂). Values of k_2 depend on radical concentrations, and H-abstraction reactions by OH, H, HO₂, and NO₂ (reactions 10–13) all contribute to HCHO depletion. Thus, k_1/k_2 is given by

$$\frac{k_1}{k_2} \approx \frac{k_{\rm CH_4}^{\rm OH}[\rm OH]}{k_{\rm HCH0}^{\rm OH}[\rm OH] + k_{\rm HCH0}^{\rm H}[\rm H] + k_{\rm HCH0}^{\rm HO_2}[\rm HO_2] + k_{\rm HCH0}^{\rm NO_2}[\rm NO_2]}$$
(18)

where k_j^{R} is the rate constant for H-abstraction from j by species R. Equation 18 can be written as

$$\frac{k_1}{k_2} \approx \frac{k_{\rm CH_4}^{\rm OH}}{k_{\rm HCHO}^{\rm OH}} \left[1 + \frac{k_{\rm HCHO}^{\rm H}}{k_{\rm HCHO}^{\rm OH}} \frac{[\rm H]}{[\rm OH]} + \frac{k_{\rm HCHO}^{\rm HO_2}}{k_{\rm HCHO}^{\rm OH}} \frac{[\rm HO_2]}{[\rm OH]} + \frac{k_{\rm HCHO}^{\rm NO_2}}{\frac{k_{\rm HCHO}^{\rm NO_2}}{k_{\rm HCHO}^{\rm OH}}} \frac{[\rm NO_2]}{[\rm OH]} \right]^{-1} (19)$$

Figure 8. HO₂/OH (- –) and H/OH (- -) ratios (left vertical axis) and HCHO yield (-) (right vertical axis) as functions of CH₄ conversion for reactants with 0 kPa NO_x (a) or 5 kPa NO (b) (873 K, 50 kPa CH₄, 50 kPa O₂, no diluent).

where $k_{\rm HCHO}^{\rm H}/k_{\rm HCHO}^{\rm OH}$, $k_{\rm HCHO}^{\rm HO_2}/k_{\rm HCHO}^{\rm OH}$, and $k_{\rm HCHO}^{\rm NO_2}/k_{\rm HCHO}^{\rm OH}$ are 4 × 10⁻¹, 3 × 10⁻⁴, and 2 × 10⁻⁶, respectively, at 873 K (from rate constants in our kinetic network). These k_1/k_2 ratios increase as [H]/[OH], [HO_2]/[OH], and [NO_2]/[OH] ratios decrease; their highest value is $k_{\rm CH_4}^{\rm OH}/k_{\rm HCHO}^{\rm OH} = 0.06$ at 873 K. Thus, high HCHO yields require NO_x, which decreases [H]/[OH] and [HO_2]/[OH] ratios by increasing OH concentrations at the expense of H and HO₂ concentrations.

3.6. Effect of Nitrogen Oxides on the Composition of the Pool of Radical Intermediates. Figure 8 shows [H]/[OH] and [HO₂]/[OH] ratios and HCHO yields as a function of CH₄ conversion for 0 kPa NO_x (a) and 5 kPa NO (b) at 873 K. NO_x markedly decreases [H]/[OH] and [HO₂]/[OH] ratios, because it is involved in conversion of H and HO₂ to OH. At maximum HCHO yields, [HO₂]/[OH] is ~1400 without NO_x (Figure 8a), but it is only ~7 with 5 kPa NO (Figure 8b). [H]/[OH] ratios are ~0.9 and ~0.1 for 0 and 5 kPa NO, respectively.

Without NO_x, \sim 60% of OH radicals form via HO₂ reactions with CH₃ (reaction 4) and \sim 30% form via H₂O₂ dissociation. With 5 kPa NO, the latter contributes only 2%, while NO_xmediated OH generation cycles,

$$HO_2 + NO = NO_2 + OH$$
(20)

$$NO_2 + H = NO + OH \tag{21}$$

form ~81 and ~14% of all OH radicals, respectively, and 98% of all HO₂ formed is converted to OH via reaction 20, instead of participating in H-abstraction from HCHO. Reactions 20–21 provide pathways for converting H and HO₂ radicals to OH,^{29,44} thereby decreasing the rate of destruction of HCHO via selective reactions of these radicals with HCHO.

3.7. Radical Reactivity and Intrinsic Limitations on Maximum HCHO Yields. The highest k_1/k_2 values in eq 19

Figure 9. Peak HCHO yield attainable as a function of the k_1/k_2 ratio for the consecutive reaction scheme given by eq 15.

are achieved when reactive contributions by [H], [HO₂], and [NO₂] become insignificant; then, k_1/k_2 ratios reflect solely the relative reactivity of OH radicals in abstracting H-atoms from CH₄ and HCHO ($k_{CH_4}^{OH}/k_{HCHO}^{OH} = 0.06$ at 873 K). Figure 9 shows the maximum HCHO yield for the scheme in eq 15 as a function of the k_1/k_2 ratio. A rate constant ratio of 0.06 leads to a maximum HCHO yield of 5.3%, while a value of 37% is expected for unselective H-abstraction from CH₄ or HCHO (i.e., $k_1/k_2 = 1$). At 5 kPa NO (at 873 K), our simulations give maximum HCHO yields of 4.5%, similar to those found for H-abstraction by OH radicals. C₁-oxygenate yields reach asymptotic values with increasing NO_x pressure (Figure 2a), because H and HO₂ are fully converted to OH and they are no longer involved in destructive reactions that abstract H from HCHO.

Species that abstract H-atoms from HCHO less selectively than OH would lead to even higher HCHO yields. Batiot and Hodnett²³ proposed that maximum yields in oxidation reactions are related to differences in energy between the weakest C-H bond in reactants and products. Large C-H energy differences (>30 kJ/mol) lead to yield losses via rapid secondary reactions. C-H bond energies in CH₄ and HCHO are 439 kJ/mol and 369 kJ/mol,45 respectively, consistent with the low HCHO yields predicted (Figure 2) and measured.^{9,12,13,16,18,20-22,36,46} This proposal is consistent with the results in Figure 10, where $k_{CH_{4}}^{R}/k_{HCHO}^{R}$ ratios are shown to depend on the enthalpy of the R + H = R - H reaction, where R is a H-abstractor. The k_{CH}^{R}/k_{HCHO}^{R} ratios are lower than unity and increase as R + H = R-H reactions become more exothermic; they approach unity only at very large R-H bond energies, when reactions of R become insensitive to differences in C-H bond energies. For OH, the $k_{CH_4}^R/k_{HCHO}^R$ ratio is 0.06 at 873 K and the enthalpy for OH + H = HO - H reactions is -507 kJ/mol. More reactive H-abstractors should, in principle, be even less selective and lead to higher C1-oxygenate yields, but their concentrations are likely to be quite low as a result of their reactivity and of their involvement in cascade reactions that form radicals selective for HCHO activation. These arguments also account for an increase in maximum HCHO yields with increasing temperature (Figure 2a), because the selectivity of H-abstraction reactions decreases as all radicals react faster with increasing temperature.

3.8. Mechanism for NO_x Losses During Reactions of CH₄– O₂–NO_x Mixtures. In CH₄–O₂–NO_x mixtures, NO_x forms less reactive N-compounds at residence times required to reach maximum HCHO yields (Figure 11a). CH₃NO₂ forms at low temperatures (<873 K, 20 kPa CH₄, 10 kPa O₂, 2 kPa NO).^{21,22}

Figure 10. At 873 K, ratio of rate constants $k_{CH_4}^R/k_{HCHO}^R$ for H-abstraction from CH₄ relative to HCHO for various abstracting entities, R, plotted as a function of the ΔH for the recombination reaction R + H = R-H. The rate constants are expected to be comparable only if both reactions are extremely exothermic, as suggested by the dotted line.

Figure 11. NO_x pool conversions (a) and moles of NO_x converted per mole of C_1 -oxygenates formed (b) as functions of reaction temperature and inlet NO at residence times leading to maximum oxygenate yields (50 kPa CH₄, 50 kPa O₂, no diluent).

Teng et al.⁴⁷ reported ~10% selectivity to CH₃NO₂ (on a carbon basis) at 10% CH₄ conversion and complete NO_x conversion. Yan et al.,⁴⁸ however, failed to detect CH₃NO₂ by infrared measurements of effluent streams. CH₄-O₂-NO₂ mixtures led to 40-80% NO₂ conversion at 673-733 K with CH₃NO₂ as the main product.⁴⁹

NO_x pool conversion initially decreased with increasing NO pressure but, then, remained at \sim 13–15% at 800–1200 K as pressure increased (Figure 11a). The ratio of NO_x consumed

Figure 12. Nitrogen selectivities for CH_3NO_2 (a), N_2O (b), and N_2 (c) as functions of reaction temperature and inlet NO pressure at residence times leading to the peak C_1 -oxygenate yield (50 kPa CH_4 , 50 kPa O_2 , no diluent).

per C₁-oxygenate formed at maximum HCHO yield increased with NO pressure (Figure 11b). Figure 12 shows N-selectivities for CH₃NO₂ (a), N₂O (b), and N₂ (c) at maximum C₁-oxygenate yields and various temperatures and NO pressures. CH₃NO₂ selectivities increased with NO pressure (up to ~0.2 kPa NO) but N₂O became the predominant product at higher NO pressures. At 2 MPa total pressure, CH₃NO₂ selectivities were slightly higher but the observed trends resemble those shown

Figure 13. Approach-to-equilibrium, η , (eq 26) for NO + $\frac{1}{2}O_2 = NO_2$ (left vertical axis) and HCHO yield (right vertical axis) as functions of residence time for reactants with 2 kPa NO (-) or 2 kPa NO₂ (---) (873 K, 50 kPa CH₄, 50 kPa O₂, no diluent).

in Figure 11 at ambient pressure. Rate-of-formation analysis showed that CH₃NO₂, N₂O, and N₂ form predominantly via

$$NO_2 + CH_3 = CH_3NO_2$$
(22)

$$NH + NO = N_2O + H$$
 (23)

$$NH + NO = N_2 + OH$$
(24)

NH forms predominantly (97%) by HNO reactions with CO, and reactions 23 and 24 consume 96% of all NH formed. These simulations show that NO_x converts to less reactive molecules during CH_4-O_2 reactions via mechanisms resembling those that cause the observed effects of NO_x on HCHO yields; thus, decoupling desired and undesired homogeneous reactions of NO_x is unlikely and on-purpose synthesis of replacement NO_x seems inevitable in practice.

3.9. Supra-equilibrium NO₂ Concentrations by Addition of CH₄ to NO-O₂ Mixtures. The approach to equilibrium (η) for direct conversion of NO to NO₂

$$NO + \frac{1}{2}O_2 = NO_2$$
 (25)

is given by

$$\eta = \frac{1}{K_{\rm eq}} \frac{P_{\rm NO_2}}{P_{\rm NO}\sqrt{P_{\rm O_2}}}$$
(26)

where K_{eq} is the equilibrium constant for reaction 25 (0.325 atm^{-1/2} at 873 K) and η becomes unity at equilibrium. Otsuka et al.²¹ measured η values for NO–NO₂ conversion at 773 K using infrared spectroscopy and concluded that NO–O₂ and NO₂–O₂ equilibrations require much longer residence times (40–80 times) than maximum HCHO yields with CH₄–O₂– NO reactants; they also concluded that NO–NO₂ did not equilibrate during CH₄–O₂–NO reactions.

Our results show instead that CH₄ increases NO–NO₂ equilibration rates and forms NO₂ at levels above those for NO–O₂ equilibrium (eq 25) at residence times required for maximum HCHO yields. Figure 13 shows η values and HCHO yields for CH₄–O₂–NO and CH₄–O₂–NO₂ reactants as a function of residence time. With NO, η is initially zero and reaches unity at ~0.6 s and a maximum value (~17) at longer residence times. The η value is 2.9 when maximum HCHO

Figure 14. Approach-to-equilibrium, η , (eq 26) for NO + $\frac{1}{2}O_2 = NO_2$ as a function of reactor residence time for reactants with 0, 12, 24, or 47.5 kPa CH₄ (873 K, 100 kPa total, 5 kPa NO, 47.5 kPa O₂, balance Ar).

yields are reached. With NO₂, η starts at very high values, but the curves are otherwise similar, except that they are shifted, together with HCHO yields, to shorter residence times. Curiously, a reductant (CH₄) increases the rate of formation of oxidized molecules (NO₂).

Next, we probe these effects by replacing CH₄ with Ar in NO–O₂ mixtures. With NO–O₂–Ar, η increases monotonically toward unity (Figure 14; 0.99 at 1.7 s), but it exceeds unity as inlet CH₄ pressures increase. Previous studies reported an increase in NO oxidation rates by CH₄ in the context of homogeneous combustion processes.⁴⁴ NO₂ accounts for 40% (experiments) and 55% (simulations) of NO_x species for streams with 50 ppm CH₄ and 20 ppm NO in ambient air at 1000 K;⁴⁴ these NO₂ levels correspond to η values of 12–23. Our simulations under these conditions also gave high η values. These supra-equilibrium NO₂ concentrations reflect kinetic coupling of elementary steps and not thermodynamic inconsistencies in the reaction network.

Figure 13 shows that increases in η occur slightly after increases in HCHO yields along the reactor; η values rise sharply as maximum HCHO yields are reached, suggesting a mechanistic connection between the HCHO and NO₂ formation pathways. NO₂-CH₃ reactions to form CH₃O and NO (reaction 5) consume 70% of the NO₂ formed and produce 97% of all the CH₃O formed (at 873 K, 5 kPa NO, 50 kPa CH₄, 50 kPa O₂). HCHO forms HCO via the sequence in eq 1, with 96% of all HCO consumed by reaction with O₂:

$$HCO + O_2 = HO_2 + CO \tag{27}$$

HO₂ forms as HCO is consumed in reaction 27 and then reacts with NO to give OH and NO₂ (eq 20), which forms NO₂ faster than NO₂ can decompose to reestablish NO $-O_2$ equilibrium. The sequence of transformations in eq 1 accounts for supraequilibrium NO₂ levels and for the higher OH concentrations and HCHO yields when NO_x is added to CH₄ $-O_2$ mixtures.

3.10. Effect of CH₄ and O₂ Partial Pressures on Oxygenate Yields. Figure 15a shows maximum C₁-oxygenate yields obtained at 873 K without NO_x over a wide range of CH₄ and O₂ pressures (0.1–50 MPa CH₄ and O₂). These maximum yields depend slightly on the total pressure for equimolar reactants (2.5–3% for 0.02–10 MPa). The HCHO fraction in the oxygenates increases with total pressures (84% at 0.1 MPa; 54% at 10 MPa), as also found experimentally.^{15,50,51} Maximum oxygenate yields are limited by O₂ depletion at low O₂/CH₄

Figure 15. Peak C₁-oxygenate yield as a function of inlet CH₄ and O₂ pressures at 873 K without NO_x (a) and for a ratio of NO₂ to CH₄ inlet pressures equal to 0.1 (b). Solid lines are drawn to show equal CH₄ and O₂ inlet pressures.

ratios. Figure 15b shows maximum C_1 -oxygenate yields at NO₂/ CH₄ inlet ratios of 0.1 for similar ranges of CH₄ and O₂ pressures. NO₂ increases these yields for all inlet CH₄ and O₂ pressures. The O₂ depletion effects on maximum yields are weaker than those without NO₂, because NO₂ acts as an additional stoichiometric source of oxygen atoms.

If O₂ pressure influences the relative rates of HCHO formation and consumption, staged O₂ feeds can be used to satisfy stoichiometric O₂ requirements while minimizing O₂ pressures along the reactor. C₁-oxygenate yields are shown as a function of CH₄ conversion for inlet O₂ pressures of 5, 50, and 500 kPa and inlet streams with 50 kPa CH_4 without NO_x (Figure 16a) and with 5 kPa NO_2 (b). In both cases, yields increased with increasing inlet O₂ pressure, suggesting that O₂ increases HCHO formation rates more strongly than HCHO consumption rates. With 5 kPa NO₂, maximum oxygenate yields are 3.3, 4.3, and 4.5% for feeds with 5, 50, and 500 kPa O₂. Figure 15 shows that the highest oxygenates yields are attained for nearly equimolar CH₄-O₂ mixtures during CH₄ oxidation to HCHO mediated by NO_x . Thus, distributed O_2 addition along a reactor is unlikely to increase C1-oxygenate yields, but it may prove useful in maintaining low local NO_x pressures and minimizing the formation of unreactive CH₃NO₂, N₂O, and N₂.

4. Conclusions

We have assembled a detailed kinetic mechanism for reactions of $CH_4-O_2-NO_x$ mixtures and confirmed that addition of NO or NO₂ to CH_4-O_2 reactants decreases residence times required for CH_4 conversion and enhances C_1 -oxygenate yields (HCHO $\gg CH_3OH$). Required residence times for CH_4 conversion and oxygenate formation are greater for NO than NO₂, which is able to activate C-H bonds in CH_4 and is generated during

Figure 16. C_1 -oxygenate yield as a function of CH₄ conversion at several inlet O₂ pressures, 50 kPa CH₄, and 0 kPa NO_x (a) or 5 kPa NO₂ (b) (873 K).

reaction when NO_x is fed as NO. Peak oxygenate yields are essentially identical with NO and NO₂ and increase both with reaction temperature and with NO_x pressure. Rate-of-formation analyses show that CH₄ conversion to HCHO and CO_x occurs sequentially, with NO_x modifying pathways available for the transformations. We probed the sensitivity of the maximum HCHO yield to rate constants of individual elementary steps and found that H-abstractions from CH₄ and from HCHO are the most kinetically significant. OH radicals account for virtually all H-abstraction from CH₄, while conversion of HCHO involves H, HO₂, OH, and NO₂. In the absence of NO_x, conversion of HO₂ to OH via reaction with CH₃ is also kinetically relevant and is a major production route for OH. Nitrogen oxides allow the rapid conversion of less reactive H and HO₂ radicals to OH, which reacts less selectively with HCHO (relative to CH₄).

We used a heuristic consecutive reaction scheme with pseudofirst-order rate constants to describe the conversion of CH₄ and formation of HCHO and CO_x products, and we showed that NO_x changes the ratio of rate constants responsible for maximum HCHO yields by reducing the [H]/[OH] and [HO₂]/[OH] ratios. Even if less reactive H and HO2 radicals were completely converted to OH, HCHO yields would be limited by OH selectivity in activating the weaker C-H bond in HCHO than that in CH₄. We showed that the presence of an even more energetic radical than OH could lead to improved yield performance, although the maximum theoretical single-pass yield of 37% would only be attained using an infinitely energetic radical that is unable to distinguish the difference in C-H bond strengths in HCHO and CH₄. Independently varying the CH₄ and O₂ pressures between 10 and 5000 kPa suggested that the highest oxygenate yields are obtained for nearly equimolar CH₄-O₂ mixtures and that increasing the total pressure has a minimal effect on the maximum oxygenate yields. Increasing O_2 pressure enhances the elementary steps leading to C_1 -oxygenate formation more than those involved in the sequential reactions of these oxygenates. The use of staged introduction of either O_2 or CH₄ along a reactor will not lead to improved yields of C_1 -oxygenates, which appear intrinsically limited to <10% during reactions of CH₄-O₂-NO_x mixtures.

At residence times leading to the maximum oxygenate yields, significant conversion of NO and NO₂ to CH₃NO₂, N₂O, and N₂ occurs, thereby wasting the NO_x "catalyst" and leading to increased residence time requirements. Formation of CH₃NO₂ is a termination step acting as a sink for CH₃ radicals and NO₂ molecules, while formation of N₂O and N₂ results from reaction of NO with NH. Although distributed CH₄ or O₂ addition would not improve oxygenate yields, staged NO_x introduction might minimize NO_x losses to unreactive N-compounds. We also found strong kinetic limitations in the nitrogen chemistry that lead to NO₂ concentrations far above those expected from the equilibrium of NO + $1/_2O_2$ = NO₂. This interesting behavior shows that the presence of a reductant (CH₄) increases the concentration of oxidized molecules (NO₂).

Acknowledgment

This study was supported by BP as part of the Methane Conversion Cooperative Research Program at the University of California at Berkeley. The technical guidance and support of Dr. Theo Fleisch are acknowledged with thanks.

Literature Cited

(1) Aasberg-Petersen, K.; Hansen, J.-H. B.; Christensen, T. S.; Dybkjaer, I.; Christensen, P. S.; Nielsen, C. S.; Madsen, S. E. L. W.; Rostrup-Nielsen, J. R. Technologies for large-scale gas conversion. *Appl. Catal., A* **2001**, *221*, 379.

(2) Reyes, S. C.; Sinfelt, J. H.; Feeley, J. S. Evolution of processes for synthesis gas production: Recent advances in an old technology. *Ind. Eng. Chem. Res.* **2003**, *42*, 1588.

(3) Rostrup-Nielsen, J. R. Production of synthesis gas. *Catal. Today* **1993**, *18*, 305.

(4) Keller, G. E.; Bhasin, M. M. Synthesis of ethylene via oxidative coupling of methane. I. Determination of active catalysts. *J. Catal.* **1982**, *73*, 9.

(5) Labinger, J. A.; Ott, K. C. Mechanistic studies on the oxidative coupling of methane. J. Phys. Chem. 1987, 91, 2682.

(6) Su, Y. S.; Ying, J. Y.; Green, W. H. Upper bound on the yield for oxidative coupling of methane. *J. Catal.* **2003**, *218*, 321.

(7) Mleczko, L.; Baerns, M. Catalytic oxidative coupling of methanereaction engineering aspects and process schemes. *Fuel Process. Technol.* **1995**, *42*, 217.

(8) Androulakis, I. P.; Reyes, S. C. Role of distributed oxygen addition and product removal in the oxidative coupling of methane. *AIChE J.* **1999**, *45*, 860.

(9) Spencer, N. D.; Pereira, C. J. Partial oxidation of CH₄ to HCHO over a MoO₃-SiO₂ catalyst: A kinetic study. *AIChE J.* **1987**, *33*, 1808.

(10) Spencer, N. D.; Pereira, C. J. V_2O_5 -SiO₂-catalyzed methane partial oxidation with molecular oxygen. *J. Catal.* **1989**, *116*, 399.

(11) Parmaliana, A.; Arena, F. Working mechanism of oxide catalysts in the partial oxidation of methane to formaldehyde: Catalytic behaviour of SiO₂, MoO₃/SiO₂, TiO₂, and V₂O₅/TiO₂ systems. *J. Catal.* **1997**, *167*, 57.

(12) Hall, T. J.; Hargreaves, J. S. J.; Hutchings, G. J.; Joyner, R. W.; Taylor, S. H. Catalytic synthesis of methanol and formaldehyde by partial oxidation of methane. *Fuel Process. Technol.* **1995**, *42*, 151.

(13) Arena, F.; Parmaliana, A. Scientific basis for process and catalyst design in the selective oxidation of methane to formaldehyde. *Acc. Chem. Res.* **2003**, *36*, 867.

(14) Zhang, X.; He, D.; Zhang, Q.; Ye, Q.; Xu, B.; Zhu, Q. Selective oxidation of methane to formaldehyde over Mo/ZrO₂ catalysts. *Appl. Catal., A* **2003**, *249*, 107.

(15) Hunter, N. R.; Gesser, H. D.; Morton, L. A.; Yarlagadda, P. S.; Fung, D. P. C. Methanol formation at high pressure by the catalyzed

oxidation of natural gas and by the sensitized oxidation of methane. *Appl. Catal.* **1990**, *57*, 45.

(16) Bañares, M. A.; Cardoso, J. H.; Hutchings, G. J.; Bueno, J. M. C.; Garcia-Fierro, J. L. Selective oxidation of methane to methanol and formaldehyde over V_2O_5/SiO_2 catalysts. Role of NO in the gas phase. *Catal. Lett.* **1998**, *56*, 149.

(17) Tabata, K.; Teng, Y.; Takemoto, T.; Suzuki, E.; Bañares, M. A.; Peña, M. A.; Garcia-Fierro, J. L. Activation of methane by oxygen and nitrogen oxides. *Catal. Rev.*—*Sci. Eng.* **2002**, *44*, 1.

(18) Irusta, S.; Lombardo, E. A.; Miró, E. E. Effects of NO and solids on the oxidation of methane to formaldehyde. *Catal. Lett.* **1994**, *29*, 339.

(19) Baldwin, T. R.; Burch, R.; Squire, G. D.; Tsang, S. C. Influence of homogeneous gas-phase reactions in the partial oxidation of methane to methanol and formaldehyde in the presence of oxide catalysts. *Appl. Catal.* **1991**, *74*, 137.

(20) Foulds, G. A.; Gray, B. F. Homogeneous gas-phase partial oxidation of methane to methanol and formaldehyde. *Fuel Process. Technol.* **1995**, *42*, 129.

(21) Otsuka, K.; Takahashi, R.; Yamanaka, I. Oxygenates from light alkanes catalyzed by NO_x in the gas phase. *J. Catal.* **1999**, *185*, 182.

(22) Otsuka, K.; Takahashi, R.; Amakawa, K.; Yamanaka, I. Partial oxidation of light alkanes by NO_x in the gas phase. *Catal. Today* **1998**, *45*, 23.

(23) Batiot, C.; Hodnett, B. K. The role of reactant and product bond energies in determining limitations to selective catalytic oxidations. *Appl. Catal., A* **1996**, *137*, 179.

(24) http://www.me.berkeley.edu/gri_mech/.

(25) Glarborg, P.; Alzueta, M. U.; Dam-Johansen, K.; Miller, J. A. Kinetic modeling of hydrocarbon/nitric oxide interactions in a flow reactor. *Combust. Flame* **1998**, *115*, 1.

(26) Glarborg, P.; Alzueta, M. U.; Kjaergaard, K.; Dam-Johansen, K. Oxidation of formaldehyde and its interaction with nitric oxide in a flow reactor. *Combust. Flame* **2003**, *132*, 629.

(27) Bendtsen, A. B.; Glarborg, P.; Dam-Johansen, K. Low-temperature oxidation of methane: The influence of nitrogen oxides. *Combust. Sci. Technol.* **2000**, *151*, 31.

(28) Hughes, K. J.; Tomlin, A. S.; Hampartsoumian, E.; Nimmo, W.; Zsély, I. G.; Ujvári, M.; Turányi, T.; Clague, A. R.; Pilling, M. J. An investigation of important gas-phase reactions of nitrogenous species from the simulation of experimental measurements in combustion systems. *Combust. Flame* **2001**, *124*, 573.

(29) Loeffler, G.; Wargadalam, V. J.; Winter, F.; Hofbauer, H. Chemical kinetic modelling of the effect of NO on the oxidation of CH_4 under fluidized bed combustor conditions. *Fuel* **2002**, *81*, 855.

(30) Takemoto, T.; Tabata, K.; Teng, Y.; Yao, S.; Nakayama, A.; Suzuki, E. Optimization of C₁-oxygenates for the selective oxidation of methane in a gas-phase reaction of CH_4-O_2-NO at atmospheric pressure. *Energy Fuels* **2001**, *15*, 44.

(31) http://iglesia.cchem.berkeley.edu/mechanism.html.

(32) Bendtsen, A. B.; Glarborg, P.; Dam-Johansen, K. Visualization methods in analysis of detailed chemical kinetics modelling. *Comput. Chem.* **2001**, *25*, 161.

(33) Yamaguchi, Y.; Teng, Y.; Shimomura, S.; Tabata, K.; Suzuki, E. Ab initio study for selective oxidation of methane with NO_x (x = 1,2). J. *Phys. Chem. A* **1999**, *103*, 8272.

(34) Tabata, K.; Teng, Y.; Yamaguchi, Y.; Sakurai, H.; Suzuki, E. Experimental verification of theoretically calculated transition barriers of the reactions in a gaseous selective oxidation of CH₄-O₂-NO₂. *J. Phys. Chem. A* **2000**, *104*, 2648.

(35) Yan, Z.; Xiao, C.-X.; Kou, Y. NO_x-catalyzed gas-phase activation of methane: A reaction study. *Catal. Lett.* **2003**, *85*, 129.

(36) Pitchai, R.; Klier, K. Partial oxidation of methane. *Catal. Rev.*-Sci. Eng. **1986**, 28, 13.

(37) Herman, R. G.; Sun, Q.; Shi, C.; Klier, K.; Wang, C.-B.; Hu, H.; Wachs, I. E.; Bhasin, M. M. Development of active oxide catalysts for the direct oxidation of methane to formaldehyde. *Catal. Today* **1997**, *37*, 1.

(38) Reyes, S. C.; Iglesia, E.; Kelkar, C. P. Kinetic-transport models of bimodal reaction sequences—I. Homogeneous and heterogeneous pathways in oxidative coupling of methane. *Chem. Eng. Sci.* **1993**, *48*, 2643.

(39) Lissianski, V. V.; Zamansky, V. M.; Gardiner, W. C. Combustion Chemistry Modeling. In *Gas-Phase Combustion Chemistry*; Gardiner, W. C., Ed.; Springer: New York, 2000.

(40) Slutskii, V. G. Effect of nitrogenous promoters on the low-temperature ignition lag of methane mixtures. *Combust. Explos. Shock Waves* **1985**, *21*, 138.

(41) Slack, M. W.; Grillo, A. R. Shock-tube investigation of methaneoxygen ignition sensitized by NO₂. *Combust. Flame* **1981**, *40*, 155. (42) Chan, W. T.; Heck, S. M.; Pritchard, H. O. Reaction of nitrogen dioxide with hydrocarbons and its influence on spontaneous ignition. *Phys. Chem. Chem. Phys.* **2001**, *3*, 56.

(43) Varma, A.; Morbidelli, M.; Wu, H. *Parametric Sensitivity in Chemical Systems*; Cambridge University Press: Cambridge, 1999.

(44) Faravelli, T.; Frassoldati, A.; Ranzi, E. Kinetic modeling of the interactions between NO and hydrocarbons in the oxidation of hydrocarbons at low temperatures. *Combust. Flame* **2003**, *132*, 188.

(45) Blanksby, S. J.; Ellison, G. B. Bond dissociation energies of organic molecules. *Acc. Chem. Res.* **2003**, *36*, 255.

(46) Parmaliana, A.; Arena, F.; Sokolovskii, V.; Frusteri, F.; Giordano, N. A comparative study of the partial oxidation of methane to formaldehyde on bulk and silica supported MoO_3 and V_2O_5 catalysts. *Catal. Today* **1996**, 28, 363.

(47) Teng, Y.; Sakurai, H.; Tabata, K.; Suzuki, E. Methanol formation from methane partial oxidation in CH_4-O_2-NO gaseous phase at atmospheric pressure. *Appl. Catal., A* **2000**, *190*, 283.

(48) Yan, Z.; Xiao, C.-X.; Kou, Y. NO_x-catalyzed gas-phase activation of methane: *In situ* IR and mechanistic studies. *Catal. Lett.* **2003**, *85*, 135.

(49) Han, L.-B.; Tsubota, S.; Haruta, M. Effect of the addition of nitrogen dioxide on the gas-phase partial oxidation of methane with oxygen under normal pressures. *Chem. Lett.* **1995**, *10*, 931.

(50) Gesser, H. D.; Hunter, N. R. The Direct Conversion of Methane to Methanol by Controlled Oxidation. *Chem. Rev.* **1985**, *85*, 235.

(51) Yarlagadda, P. S.; Morton, L. A.; Hunter, N. R.; Gesser, H. D. Direct conversion of methane to methanol in a flow reactor. *Ind. Eng. Chem. Res.* **1988**, *27*, 252.

Received for review July 28, 2005 Revised manuscript received December 11, 2005 Accepted January 27, 2006

IE050885T