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Abstract

A new procedure for estimating surface di'usivities and tortuosities within realistic models of complex porous structures is reported.
Our approach uses Monte-Carlo tracer methods to monitor mean-square displacements for molecules restricted to wander on pore walls
within model random mesoporous solids typical of those used as adsorbents, heterogeneous catalysts, and porous membranes. We consider
model porous solids formed from initial packings of spheres with unimodal, Gaussian, or bimodal distributions of size; changes in pellet
porosity are achieved by increasing microsphere radii and by randomly removing spheres from highly densi:ed packings in order to
simulate densi:cation and coarsening, respectively. Geometric tortuosities for the surface phase reached large values at void fractions
near 0.04 and 0.42 for densi:ed solids; the surface tortuosity gave a minimum value of 1.9 at a void fraction of ∼0.26. These high
tortuosities correspond to percolation thresholds for the void and solid phases, which in turn re<ect packing densities at which each phase
becomes discontinuous. Surface tortuosities for coarsened solids at low void fractions were similar to those in densi:ed solids; however,
at void fractions above ∼0.3, surface tortuosities of coarsened solids increased only gradually with void fraction, because coarsening
retains signi:cant overlap among spheres at void fractions above those giving disconnected solids in densi:ed structures. Simulations of
bulk di'usion within voids were used to compare the transport properties and connectivity of the void space with those of surfaces that
de:ne this void space. Surface and void tortuosities were similar, except for void fractions near the solid percolation threshold, because
unconnected solid particles interrupt surface connectivity but not gas phase di'usion paths. Surface and void tortuosities were also similar
for channels within linear chains of overlapping hollow spheres as both tortuosities increased with decreasing extent of sphere overlap.
These simulations provide a basis for estimates of surface and void tortuosities, which are essential in the interpretation and extrapolation
of di'usion rates in complex porous media. Surface and void di'usivity estimates di'ered signi:cantly from those obtained from lattice
and capillary models of complex porous structures.
? 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The transport properties of porous materials are critical for
their function in heterogeneous catalysis (Satter:eld, 1970;
Wakao & Smith, 1962; Weisz & Hicks, 1962), non-catalytic
gas–solid reactions (Dogu, 1981; Wen, 1968), membrane
transport (Baker, 2002; Kong, Kim, Lee, Shul, & Lee, 2002),
and adsorption processes (Ruthven, 1984). The large surface
areas required for high densities of adsorption or catalytic
sites can impair eDcient access to such sites by reactants
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and the required removal of reaction products, because
of complex interconnections among the small voids re-
sponsible for these high surface areas. Intrapellet transport
restrictions limit the rates and selectivities for many chem-
ical reactions catalyzed by solids (Aris, 1975; Froment
& Bischo', 1990) and may lead to undesired localized
phenomena, such as exotherms, which can lead to cat-
alyst deactivation by sintering or to carbon formation
(Bartholomew, 2001). Rigorous guidance for the design
of porous catalysts, membranes, and adsorbents requires
detailed knowledge about the dynamics of all transport pro-
cesses involved in the exchange of molecules between the
external <uid phase and the intraparticle void and surface
structures.
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In heterogeneous reactors, transport of chemical species
occurs over a wide range of length and time scales
(Lee, 1985; Raimondeau & Vlachos, 2002), as illustrated in
Fig. 1. At the largest scales, hydrodynamic e'ects (Figs. 1a
and b) in<uence <ow patterns and mass transfer between
the bulk <uid and the porous solids. Transport within in-
trapellet voids occurs via bulk (Fig. 1c) or Knudsen di'u-
sion (Fig. 1d), depending on the relative magnitude of the
mean free path of molecules, � , and the mean pore size, Lrp.
When molecules adsorb and move along pore walls, surface
di'usion contributes an additional transport path (Fig. 1e).
Surface di'usion involves motion of adsorbed species un-
der the in<uence of a potential energy :eld imposed by the
surface; for chemisorbed species, such migration processes
can involve the sequential formation and cleavage of bonds
with surfaces (Somorjai, 1972; Tsong, 2001). The relative
contributions of gas phase and surface di'usion processes
depend on the dimensions, availability, and connectivity of
the void space, on the mobility and mean free paths on the
surface and in the void space, and on the connectivity and
roughness of the surfaces that de:ne the intraparticle voids.

Experimental studies have shown that surface di'u-
sion contributes signi:cantly to the total di'usive <ux in
both mesoporous and microporous systems (Carman &
Malherbe, 1950; Eberly Jr., & Vohsberg, 1965; Prasetyo,
Do, & Do, 2002; Richard, Favre, Tondeur, & Nijmeijer,
2001; Tuchlenski, Uchytil, & Seidel-Morgenstern, 1998).
The contribution of surface di'usion increases as sur-
face concentrations of adsorbed species increase from
sub-monolayer to multi-layer coverages (Choi, Do, & Do,
2001; Gilliland, Baddour, Perkinson, & Sladek, 1974;
Jaguste & Bhatia, 1995). Even well below a monolayer, sur-
face di'usion contributes to overall transport rates in porous
carbon (Ash, Barrer, & Pope, 1963), silica (Schneider &
Smith, 1968), and MoS2 (Reed Jr., & Butt, 1971). Exper-
imental surface di'usivities are estimated from di'erences
in transport rates for molecules and conditions that lead to
signi:cant or negligible surface transport (Barrer & Grove,
1951a, b). This indirect approach and our limited knowl-
edge about molecule-surface interactions has prevented the
separation of intrinsic surface mobilities from morpholog-
ical e'ects of surface connectivity within complex porous
structures.

When surface and gas phase di'usion occur concurrently,
the steady-state di'usion <ux, N , depends on the relevant
driving forces in the surface and gas phases:

N = Ng + Ns

= −
[
De;g

Cg

fg

dfg
dx

+ avDe;s
d(lnfs)
d(lnCs)

dCs

dx

]
; (1)

where Ng is the gas phase di'usive <ux, Ns is the sur-
face di'usive <ux, De;g is the e'ective gas phase di'u-
sivity, De;s is the e'ective surface di'usivity (both with
(length)2=time units); Cg is the gas phase concentration
(moles per unit void volume), Cs is the surface concentration

(moles per unit surface area), av is the surface-to-volume
ratio, x is the direction of net motion, and fs and fg are
the fugacities of the di'using species in the thermodynami-
cally non-ideal surface and gas phases, respectively (Reyes,
Sinfelt, & DeMartin, 2000). The assumptions of an ideal gas
phase (fg =Cg=RT ) and adsorption–desorption equilibrium
(fs = fg) lead to

N = Ng + Ns = −
[
De;g + avDe;s

Cs

Cg

]
︸ ︷︷ ︸

De

dCg

dx
; (2)

where De is the overall e'ective di'usivity. We note that Cs

is related to Cg through an adsorption isotherm that may or
may not re<ect a thermodynamically ideal adsorbed phase
and that the ratio Cs=Cg becomes the Henry’s law constant
for conditions leading to a linear relation between gas and
surface concentrations.

Transport properties of porous solids have been treated
using interconnected bundles of tortuous capillaries and reg-
ular lattices as convenient models of the void structure. For
combined gas phase and surface di'usion, an e'ective dif-
fusivity can be described in terms of the di'usivities asso-
ciated with an equivalent capillary and of tortuosity factors
for the void and surface phases:

De =
Dg�
�g

+
Ds

�s
av

Cs

Cg
: (3)

Dg and Ds are gas phase and surface di'usivities, respec-
tively, in equivalent capillaries; they depend on properties
of molecules, such as their velocity in the <uid phase and
their binding energy and mobility as di'using species on
surfaces. The terms �g and �s denote the gas (void) and sur-
face tortuosities, de:ned as the length of the equivalent cap-
illary required in order to describe e'ective di'usivities in
the void and surface phases, respectively. As Eq. (3) clearly
shows, the net contribution of the surface to overall trans-
port also depends on the surface-to-volume ratio and on the
adsorption isotherm (Reyes et al., 2000).

Computational studies of gas di'usion within porous
solids have often used random aggregates of spheres
(Akanni, Evans, & Abramson, 1987) or cylinders (Burganos
& Sotirchos, 1989; Tomadakis & Sotirchos, 1993) to de-
scribe the details of the porous medium. Speci:cally, par-
tially overlapped random-loose packings of spheres can
be used to simulate the structure and void phase transport
properties of coarsened and densi:ed porous solids (Reyes
& Iglesia, 1991a, 1993). The impact of pore space struc-
ture on surface di'usion in porous solids has received less
attention (Bhatia, 1988; Ho & Strieder, 1981). The few
available treatments address lattice di'usion near obstacles
on <at surfaces (Pekalski & Ausloos, 1995) or random
walk simulations on unobstructed curved surfaces (Holyst,
Plewczynski, Aksimentiev, & Burdzy, 1999), which do not
provide realistic descriptions of surface transport within
complex structures.
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Fig. 1. Schematic diagram of the range of length and time scales over which mass transport occurs in complex porous structures held within contacting
<ow devices. Hydrodynamic <ow driven by local pressure gradients at device length scales (a), intraparticle mass transport (b) involving bulk (c) or
Knudsen (d) gas phase di'usion and driven by local concentration gradients. Surface di'usion (e) occurring over atomic length scales as adsorbed
molecules move between atomic positions of surfaces.

Here, we describe an algorithm for monitoring random
walks on exposed surfaces of randomly packed and over-
lapped spheres, which provide realistic representations of
complex solids. E'ective surface di'usivities are estimated
using tracer methods that probe the geometric connectiv-
ity and tortuosity of the surface phase. These estimates
are compared with those from tracer simulations within
the void space to provide a complete description of com-
bined void and surface transport properties for these porous
structures.

2. Algorithms for porous structure assembly and for
simulating e�ective di�usivities for surfaces and voids

Simulations of transport within porous solids require: (i)
appropriate methods to represent realistic porous structures
and (ii) eDcient algorithms to monitor tracer motion within
the voids and on the surfaces that constrain these voids. Our
previous studies have focused on the synthesis and charac-
terization of such porous structures and on simulations of
the transport properties of their void space (see Reyes &
Iglesia, 1991a, b and references therein); therefore, we de-
scribe these procedures only brie<y here. The current study
extends this previous work to di'usion on surfaces, while
concurrently providing a rigorous comparison of the trans-
port properties of the void and surface phases.

2.1. Structural models of porous solids

Scanning electron micrographs of SiO2 and TiO2 porous
solids are shown in Fig. 2. These structures are typical
of solids formed by sol-gel, precipitation, and combustion

methods. The internal structure of pellets or agglomerates
formed by these methods consists of microspheres over-
lapped to various extents. When these microspheres are
non-porous, their interparticle space provides the only avail-
able di'usion path; for porous microspheres, intraparticle
voids also contribute to this di'usion path. The computa-
tional assembly of these representative structures involves
packing of spheres, followed by manipulations meant to cap-
ture porosity changes caused by densi:cation or coarsening.
Fig. 3 shows regions of typical packings. Monte-Carlo meth-
ods are used to form random-loose packings using spheres
randomly chosen from a prescribed size distribution, such as
monosize (Fig. 3a), Gaussian (Fig. 3b), or bimodal (Fig. 3c).
These spheres are dropped into a large cylindrical “con-
tainer” by releasing each sphere at a random position within
the cylinder cross-section and allowing it to settle when it
reaches a stable three-point contact. Spheres are not allowed
to bounce or to move previously placed spheres. The re-
sulting structures accurately capture the morphology of the
void space formed during slow sedimentation or :ltering of
solids formed via condensation, precipitation, and combus-
tion methods (cf. Figs. 2 and 3).

A quasi-spherical subset of this packing (∼ 105 spheres)
is then extracted from this large cylindrical packing. For
monosize spheres, the initial packing void fraction, �, ob-
tained by Monte-Carlo sampling of the void space is 0.42,
consistent with values expected for random-loose structures
(Haughey & Beveridge, 1969). Densi:cation of agglomer-
ates by compression or controlled sintering is achieved by
randomly increasing the radii of the microspheres, using a
uniform or Gaussian distribution, to achieve the desired void
fraction. Examples of slightly densi:ed (�=0:3) and highly
densi:ed (� = 0:05) solids are shown in Figs. 3d and e,
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Fig. 2. Scanning electron micrographs of commonly used catalyst supports (a) SiO2 and (b) TiO2.
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(a)                                            (b)           
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Fig. 3. Examples of model complex porous structures constructed with sphere packing and modi:cation algorithms used in this study. Non-overlapped
packings with unimodal (a), Gaussian (b), or bimodal (c) distributions of microsphere radii. Densi:ed solids with void fractions of �=0.3 (d) and
�=0.05 (e) and a coarsened solid with �=0.3 (f).

respectively. Coarsening was simulated by randomly remov-
ing spheres from previously densi:ed packings (� = 0:05)
to reach the desired void fraction. Fig. 3f shows a sam-
ple of a coarsened solid with a void fraction of 0.3. This
coarsening procedure leads to fewer and larger pores than in
densi:ed packings with similar void fractions (cf. Figs. 3d
and f), as also detected by microscopy and porosimetry in
coarsened and densi:ed porous structures. The di'erences
between densi:ed and coarsened solids are apparent from
volume-averaged pore size (radii) distributions determined
from distances between collisions in Knudsen di'usion sim-
ulations (Fig. 4). For densi:ed solids (Fig. 4a), normal-
ized pore size distributions become narrower and shift to-
ward smaller pores as densi:cation occurs. Similar trends
are apparent for coarsened solids (Fig. 4b), except that such
solids exhibit broader pore size distributions, which shift to-
ward larger pores than in densi:ed solids with similar void
fractions.

2.2. Transport simulation methods

2.2.1. Di8usion within voids
Tracers are initially placed at random positions within ∼ 5

microsphere diameters of the packing center. Any molecule
placed within a solid microsphere is assigned a zero dis-
placement, while those started in void space are allowed to
move as described below. Each simulation monitors the cu-
mulative displacement of several thousand tracers, with a
mean displacement, 〈R〉, of ∼ 10 microsphere diameters,
while ensuring that the sample volume is large enough that
fewer than 1% of the tracers reach the edge of the pack-
ing volume. These criteria enable sampling of representa-
tive void regions, while avoiding trajectories biased by the
selective escape of those tracers that sample the structure
most eDciently. In each simulation, we use an exponen-
tial distribution of free paths for gas phase redirecting col-
lisions (Hildebrand, 1963), with a mean free path, �, 100
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Fig. 4. Volume-based pore size (radii) distributions for densi:ed (a) and
coarsened (b) model porous structures. For each solid, the half-distances
between successive wall collisions recorded during a Knudsen di'usion
simulation were normalized by the mean sphere radius for that packing.
The resulting values of normalized pore radii were binned and each bin
count was weighted by the cube of the associated pore size.

times smaller than the mean pore radius, Lrp (determined
from the number-averaged distance between successive col-
lisions in Knudsen di'usion simulations, �= Lrp ¿ 102). The
small value of �= Lrp (0:01) ensures that di'usion occurs in
the bulk regime. Tracers undergo random redirections af-
ter molecule–molecule collisions; the desorption direction
after a molecule–wall collision is prescribed by the Knud-
sen cosine law (Greenwood, 2002; Knudsen, 1950). In our
previous studies, (see Reyes & Iglesia, 1991a), desorption
from a solid surface was assumed to occur in a purely ran-
dom direction. As in our previous study, we use a hybrid
continuum-discrete algorithm to increase computational ef-
:ciency. When a tracer is farther than 5 ∗ � from the near-
est surface, it moves in one step to a random point on the
surface of an imaginary sphere centered at the tracer posi-
tion and tangent to that surface, and the simulation time is
updated appropriately.

The e'ective di'usivity within the packing, De;g, is given
by the Einstein equation in three dimensions:

De;g =
〈R2〉
6t

(4)

in which 〈R2〉 is the mean-square tracer displacement and
t is the time elapsed; the latter is proportional to the total

distance traveled by individual tracer steps. The geometric
tortuosity factor, �g, for the void space is then given by

�g =
� LD
De;g

: (5)

Here, LD is the di'usion coeDcient in an equivalent capillary
of radius Lrp. Because simulations are in the bulk regime,
LD equals � ∗ �=3, where � is the molecular velocity, taken
to be unity here without loss of generality, but given rigor-
ously for a given molecule by kinetic theory. The resulting
tortuosity factor rigorously re<ects the presence of redirect-
ing obstacles, which lengthen the path between macroscopic
points within complex porous structures.

2.2.2. Di8usion on the surface of packing spheres
Surface di'usion is simulated by monitoring the distance

traveled by a few thousand tracers, constrained to move on
exposed packing surfaces. Tracers are initially placed ran-
domly on surfaces within the same central regions used in
void space simulations. Each tracer is moved a :xed dis-
tance, �s, in a random direction during each Monte-Carlo
step. The value of �s chosen is 0:01 ∗ Lr, where Lr is the
number-averaged microsphere radius. As discussed later,
this value leads to normalized e'ective surface di'usivities
and surface tortuosity estimates that do not depend on the
value of �s.

Tracer motion on packing surfaces involves placing a
tracer at a position (x0; y0; z0) on the surface of sphere Si,
with radius Ri. The tracer is then moved a distance �s by
choosing a random point on the circumference of the circle
de:ned by the intersection of sphere Si with an imaginary
sphere of radius(

2Ri sin
(

1
2
�s
Ri

))

centered at the initial tracer location. This approach is valid
for tracers located farther than a distance �s from the in-
tersection of sphere Si with its neighbors. Our choice of
�s =0:01∗ Lr ensures that most steps can be described by this
algorithm. At the new position (x1; y1; z1) on sphere Si, we
use neighbor lists in order to determine whether the tracer
resides within any of the spheres neighboring Si. If point
(x1; y1; z1) does not fall within any of the neighbor spheres,
a Monte-Carlo step is taken on sphere i. If point (x1; y1; z1)
is contained within a neighboring sphere, then that sphere
(Sj) is chosen as the destination sphere. Rarely, a new point
resides within two or more neighboring spheres, a situation
that arises most frequently as void fractions approach the
void percolation threshold (∼0.04–0.05); in such cases, the
closest sphere is arbitrarily chosen as the destination. Then,
the tracer is returned to (x0; y0; z0) and an acceptable destina-
tion is randomly chosen from the set of all exposed locations
on Sj a distance of �s from (x0; y0; z0). Surface di'usivities
are estimated form the resulting mean square displacements
〈R2〉 of several thousand tracers covering representative
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regions of the exposed surfaces of the packing (∼ 107 steps
per tracer) using

De;s =
〈R2〉
6t

: (6)

The Einstein equation in three dimensions is used even
though motion is restricted to exposed surfaces, be-
cause tracers sample the packing structure along all three
coordinate axes, just as in di'usion within the void
space.

An equivalent capillary is used to determine geometric
tortuosities for the surface phase. Here, tracers are allowed
to move on the surface of an in:nitely long cylinder of ra-
dius Lrp with the same step size �s as in the packing sim-
ulation. After suDciently long times, surface di'usion on
long capillaries becomes one dimensional, because only the
axial dimension contributes to net displacements. There-
fore, di'usivities are given by the one-dimensional Einstein
equation (De;s = 〈R2〉=2t). This capillary surface di'usiv-
ity is identical to that obtained for two-dimensional random
walks on <at in:nite planes and it is given by �s ∗ �=4.
Note that this di'usion coeDcient would be a factor of
two greater if exponentially distributed paths were used
(Kennard, 1938); regardless of whether :xed or distributed
jump distances are implemented, the same procedure must
be used for the reference system as in the packing simu-
lation. The equivalent capillary and an in:nite plane pro-
vide identical references for determining surface tortuosities
because

�s =
(〈R2〉=4t)plane

De;s
=

(〈R2〉=2t)capillary

De;s
: (7)

3. Results and discussion

3.1. Unbiased random walks on packing surfaces

The unbiased nature of the surface motion algorithm was
con:rmed by measuring the frequency with which trac-
ers visit various surface regions in a subset of densi:ed
packings containing 20 microspheres. The surface of each
sphere was described as a regular 50× 50 grid spanning the
� and � directions. Each of the 2500 patches on each sphere
was described by its fractional exposure, estimated based
on ∼ 108 points randomly placed on each sphere. Patches
partially exposed lie near intersections among spheres. A
single tracer was allowed to move on the surface of the
20-sphere packing, taking 1010 steps of a size de:ned as a
fraction of the average sphere radius Lr. The number of visits
(normalized by exposed patch area) was monitored for each
patch. The resulting areal visitation frequencies are shown
in Fig. 5 as a function of fractional exposure for a densi-
:ed solid with void fractions of 0.3 (a) and 0.1 (b) and a
�s= Lr of 0.01. For a void fraction of 0.3, the areal frequency
was essentially constant for fractional exposures larger than
∼ 0:25, but slightly smaller for patches at interfaces, which

Fig. 5. Number of tracer visits per unit exposed surface area as a function
of the fraction of patch area exposed for a single tracer moving on the
surface of a 20-microsphere packing. Results are shown for packings
densi:ed to �=0.3 (a) and �=0.1 (b) and a :xed jump distance equal
to 0.01 times the number-averaged sphere radius.

account for a very small fraction of exposed surfaces. This
slight bias re<ects the :nite mean free path and the result-
ing non-statistical sampling of small patches by tracers.
Visitation frequencies are less a'ected by fractional expo-
sure for void fractions of 0.1 (Fig. 5b), because the fraction
of the total exposed surface residing near intersections is
much larger than for void fractions of 0.3; this leads to
more representative sampling of partially exposed patches.
For both void fractions, however, the use of a smaller jump
distance (e.g. �s = 0:002 ∗ Lr) did not in<uence results.
These data suggest that the algorithms used to describe
motion on a sphere surface and crossing among spheres are
unbiased.

These conclusions were con:rmed by the e'ective surface
di'usivities determined for various step sizes (�s= Lr). Fig. 6
shows normalized e'ective surface di'usivities, De;s=(�s∗�),
as a function of �s= Lr for densi:ed solids with void frac-
tions of 0.1 and 0.3. Normalized di'usivities remained con-
stant for step sizes up to �s= Lr of 0.40 and 0.20 for 0.3 and
0.1 void fractions, respectively. At even lower void frac-
tions, the use of relatively large steps introduces diDculty
in sphere crossing events, especially as typical pore dimen-
sions become smaller with decreasing void fraction. Small
steps, however, increase computational times required to
cover representative packing regions. In view of this, we
chose a �s= Lr value of 0.01 for surface di'usion simula-
tions as a compromise between accuracy and computational
eDciency.
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3.2. Surface and void phase transport in sphere packings

Here, we present simulation results for porous solids
formed from initial random-loose packings of monosize
spheres, which were densi:ed to a given void fraction by
increasing the sphere radii according to a uniform dis-
tribution. The structure and transport properties of such
densi:ed packings are essentially una'ected by whether
microsphere growth is prescribed by uniform or Gaussian
distributions. Fig. 7 shows normalized surface di'usiv-
ities, De;s=(�s ∗ �), for a wide range of void fractions,
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Fig. 8. The fraction of total microsphere surface area exposed for porous
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achieved by either densi:cation or coarsening. E'ective
surface di'usivities are obtained by multiplying these
normalized surface di'usivities by the characteristic dis-
tance between binding sites and the surface mobility for
a given molecule-surface system. Molecular dynamics
simulations have been used to understand and predict
the mobility of various species on well-de:ned surfaces
(Baletto, Mottet, & Ferrando, 2000; Huang, Balan, Chen,
& Fichthorn, 1994) and even on realistic amorphous solids
(Stallons & Iglesia, 2001).

As expected, e'ective surface di'usivities increased with
increasing void fraction (up to∼ 0:28) in densi:ed solids be-
cause connecting surface paths among macroscopic regions
become less contorted as void fraction increases. Larger void
fractions, however, ultimately lead to loss of connectivity
among sphere surfaces and to a decrease in e'ective di'u-
sivity for packings with void fractions above 0.28. As void
fractions approach values typical of contacting spheres (∼
0:42), macroscopic connectivity through the surface phase
is lost and e'ective di'usivities approach zero as materials
approach this solid percolation threshold. Coarsened solids
show similar trends, but e'ective di'usivities do not drop as
sharply at void fractions of ∼ 0:42. This re<ects the nature of
the coarsening process, in which spheres are removed from
very highly densi:ed and well-connected packings; there-
fore, surface connectivity is retained even as we approach the
percolation threshold for solids in random-loose packings.
Fig. 8 shows the fraction of the total microsphere area that
remains exposed after densi:cation or coarsening to a given
void fraction. Densi:cation decreases the exposed surface
fraction to 0.155 for a void fraction of 0.05 from its value
of unity in the starting random-loose packing. As spheres
are then removed from this densi:ed packing in coarsening
simulations, the fraction exposed increases but reaches only
0.525 (instead of unity) as the void fraction reaches that of
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Fig. 9. Surface tortuosity factors for densi:ed and coarsened porous
structures as a function of void fraction.

the initial random-loose packing (0.42). This illustrates the
signi:cant remaining connectivity of solids (and their sur-
faces) in coarsened porous structures even for large void
fractions.

Tortuosity factors for the surface phase are shown in Fig. 9
for densi:ed and coarsened solids as a function of void frac-
tion. For densi:ed solids, a minimum tortuosity factor of 1.9
is attained at a void fraction of ∼ 0:26. Lower void fractions
lead to larger surface tortuosities, which reach values of 7.4
at void fractions of 0.065 and continue to increase as the
voids (and their de:ning surfaces) become disconnected for
void fractions lower than 0.04–0.05. At such low void frac-
tions, connected paths across macroscopic regions through
the void space become unavailable and surface tortuosities
concurrently approach in:nite values. Thus, the sharp in-
crease in surface tortuosity at low void fractions re<ects the
disappearance of a connected void phase and of its de:ning
surface. Void fractions above ∼ 0:26 lead also to high sur-
face tortuosities, as the extent of overlap among neighboring
spheres decreases, especially for densi:ed solids. In fact, the
surface phase becomes discontinuous with increasing void
fraction; as a result, tracers are unable to cover macroscopic
regions when constrained to move on surfaces. The surface
phase becomes discontinuous at void fractions correspond-
ing to the percolation threshold for the solid phase.

Coarsened solids exhibit similar trends for void fractions
below 0.24, for which surface tortuosities increase as solids
approach the void percolation threshold. Surface tortuosi-
ties, however, are higher than for densi:ed solids with
similar void fractions. This di'erence re<ects the coarsen-
ing mechanism, in which removal of spheres from highly
densi:ed structures leads to more inaccessible regions
than for similar void fractions achieved via densi:cation
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Fig. 10. Surface and void tortuosity factors for densi:ed porous structures
as a function of void fraction.

processes, as discussed above. As in densi:ed solids, surface
tortuosities near the void percolation threshold in coarsened
solids decrease with increasing void fraction and then in-
crease as surface connectivity is lost at even higher void
fractions. The relatively <at region of minimum tortuosity
at intermediate void fractions is much broader for coarsened
than for densi:ed solids, because connectivity is retained at
higher void fractions as a result of the highly densi:ed solid
from which coarsened solids are formed. Consequently,
surface tortuosities in coarsened structures do not increase
as sharply at void fractions above ∼ 0:4 as in densi:ed
structures.

In an e'ort to relate surface and void space connectivities
and transport properties, we compare next surface and void
phase tortuosities for densi:ed and coarsened model porous
structures. The comparison is shown for densi:ed solids in
Fig. 10. Void tortuosity factors are higher than those for the
surface phase for void fractions below ∼ 0:25 (e.g., 4.28 vs.
2.65 at 0.15 void fraction; 12.25 vs. 5.12 at 0.08 void frac-
tion). At void fractions higher than ∼ 0:25, surface tortuosi-
ties become larger than for the void phase, as voids become
increasingly connected at the expense of a decrease in the ex-
tent of sphere–sphere overlap. Fig. 11 shows similar compar-
isons for coarsened solids. Di'erences between surface and
void phase tortuosities tend to be smaller for coarsened than
for densi:ed porous structures. At higher void fractions, sur-
face tortuosities become again higher than for the void space.
These similarities between void and surface phase tortuosi-
ties are reasonable when both phases are continuous, because
the surface phase in e'ect de:nes every structural detail of
the void space. To our knowledge, similar comparisons have
not been previously reported for realistic complex porous
structures.
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Fig. 11. Surface and void tortuosity factors for coarsened porous structures
as a function of void fraction.

The packings used in the previously discussed results
were formed using initial packings of monosize spheres.
Next, we explore the e'ects of the initial size distributions.
Random-loose packings based on Gaussian size distribu-
tions with standard deviations of 0%, 5%, 10%, 15%, 20%,
and 25% of the mean radius and truncated at three standard
deviations were formed and densi:ed to a void fraction of
0.3. Surface and void tortuosities were essentially indepen-
dent of the breadth of the Gaussian distribution. For these
cases, the void tortuosity factors vary by less than 2% from
the value of 1.83 for monosize spheres; surface tortuosities
for the Gaussian solids vary less than 3% from the value of
2.20 on initially monosize spheres. We also considered bi-
modal uniform solids containing equal volumes of spheres
with radii r1 and r2. Size ratios of 1.0, 1.25, 1.57, 2.0, 2.5,
3.15, 3.97, and 5.0 were examined. For such bimodal solids,
the void fraction of non-overlapping spheres decreased with
increasing size ratio from a value of 0.42 for uniform spheres
to 0.378 for r2=r1 =2:50, and to 0.335 for r2=r1 =5:00. After
densi:cation of each bimodal distribution to a void fraction
of 0.3, void tortuosities di'ered by less than 5% from those
for uniformly sized spheres (r2=r1 = 1), but surface tortu-
osities increased monotonically with increasing size ratio.
For a void fraction of 0.3, surface tortuosities were 2.0 for
uniformly sized spheres, 2.2 for r2=r1 = 2:50, and 2.37 for
r2=r1=5:00. These small systematic di'erences between sur-
face and void tortuosities re<ect the lower extent of overlap
required in order for a given packing to achieve a common
void fraction of 0.3, in view of the lower initial void frac-
tion achieved as the size ratio increased. In e'ect, densi:ca-
tion to a given void fraction required less overlap as the size
ratio increases, leading to larger values of surface tortuosi-
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Fig. 12. Void and surface tortuosity factors as a function of relative
spacing, ds=dp, for a periodically constricted pore system consisting of
an in:nite one-dimensional array of overlapping spheres.

ties, which are very sensitive to the extent of sphere–sphere
overlap.

3.3. Surface and void transport in an idealized pore system

Our algorithms for surface and void tracer di'usion
were also used for model pore systems consisting of linear
“necklaces” of partially overlapped spheres with diame-
ter dp with centers separated by a distance ds (inset in
Fig. 12). The voids are de:ned by the space contained
within the spheres in the one-dimensional string. A given
sequence of spheres is de:ned by its relative spacing,
ds=dp. These void structures resemble a straight cylinder
for ds=dp values near zero and a non-overlapping uncon-
nected sequence of spheres for a values of unity. A similar
construct was used previously (Kanellopoulos, Munday, &
Nicholson, 1983; Nakano, Iwamoto, Yoshinaga, & Evans,
1987) in studies of Knudsen di'usion within periodically
constricted pores.

Simulations of void space (in the bulk regime) and sur-
face di'usion were carried out using the same algorithms
described above for di'usion in the packings. Di'usivities
were calculated from mean square displacements using the
Einstein equation in one dimension, because net macro-
scopic displacements occur only along the axial direction.
Fig. 12 shows void and surface tortuosities as a function
of relative spacing, ds=dp, for this periodically constricted
structure. As in the case of the packings, surface and void
tortuosities are very similar and increase concurrently as the
extent of overlap decrease and ds=dp values increase above
0.5. As the extent of overlap increases, the bicontinuous sur-
face and void phases retain similar tortuosities, because the
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Fig. 13. Simulation results for void tortuosity based on bulk regime
di'usion are compared with the 1=� form suggested by Wakao and Smith
(1962), with 1=(� − 0:04), which is corrected for the void percolation
threshold, and with results for a Bethe lattice with a coordination number
of Z = 10.

structure of either phase exactly de:nes the other phase in
a bicontinuous system.

3.4. Implications for description and understanding of
pore structures

Tortuosity factors for void space are typically related to
void fractions in porous structures using descriptions that
neglect some essential structural features of the connect-
ing paths (Mitani, 1984; Wakao & Smith, 1962). Theoreti-
cal analyses that lead to compact mathematical expressions
for e'ective transport properties or void tortuosities often
assume dilute or randomly placed spheres in a continuous
second phase and assume that the void fraction captures all
relevant geometrical features in a porous structure (Prager,
1963; Weissberg, 1963). Such approaches provide incom-
plete descriptions of complex porous solids typically used
as adsorbents and catalysts. Fig. 13 shows again void tortu-
osities obtained from bulk di'usion simulations along with
curves representing simple approximations of �g ∼ 1=� and
�g ∼ 1=(� − 0:04); the latter form additionally captures
that the tortuosity becomes in:nite at the void percolation
threshold, corresponding to a void fraction of ∼ 0:04 for
these solids. As seen in the graph, tortuosity values from
these simple relations di'er signi:cantly from our estimates
of void tortuosities, and would also fail to predict surface
tortuosities in view of the topological correspondence be-
tween the surface and void space. As densi:cation or coars-
ening occurs, pendant pores and isolated regions emerge
as increasingly abundant components of the total void vol-
ume and contribute to e'ective di'usivities measured us-

ing tracer methods. Tracer methods, used here and in many
experimental approaches, probe such pendant dead-end re-
gions because tracers are “delayed” during the sampling of
their volumes. Steady-state di'usivities, which are consid-
erably more diDcult to obtain experimentally and compu-
tationally, but which are relevant in many practical uses of
these materials, are una'ected by such pendant voids be-
cause at steady-state net ingress into such regions does not
occur. The di'erences between steady-state and tracer dif-
fusion have been recognized (Bryntesson, 2002; Sotirchos,
1992). Steady-state di'usion simulations can be carried out
using test-particle methods based on transmission proba-
bilities (Abbasi, Evans, & Abramson, 1983; Burganos &
Sotirchos, 1988) and we are currently implementing such
simulations in our realistic packing structures.

The complexity of real and simulated porous structures
and computational constraints hinder the measurement of
the level of isolated or dead-end pore space in our model
solids. Lattice-based structural models are amenable to
analytical treatments of tortuosities, void isolation, and
transport properties (Hollewand & Gladden, 1992; Reyes &
Jensen, 1985; Sharratt & Mann, 1987; Vrettos, Imakoma,
& Okazaki, 1989). One useful construct is a Bethe net-
work consisting of a non-reconnecting in:nite branching
tree described fully by the number of branches emanating
from each node (the coordination number Z). Porosity is
introduced by removing a fraction of the branches and the
e'ective di'usivities and various forms of porosity are ob-
tained using analytical functions derived from percolation
theory (see Reyes & Jensen, 1985). The non-reconnecting
nature of the branches renders these models unphysical,
but nonetheless useful in those cases where porous solids
evolve as a result of chemical reactions. Fig. 13 shows the
tortuosity-void fraction relation obtained for a connectivity
value of 10, which provides the most reasonable agreement
with tortuosity values obtained for our packings. Clearly,
a lattice with :xed connectivity does not accurately repre-
sent void tortuosities throughout the entire range of void
fractions, as expected from the much greater degree of iso-
lation in non-reconnecting branches than in realistic void
structures, especially as the void fraction approaches a per-
colation threshold. Even though Bethe lattices signi:cantly
overestimate the extent of porosity isolation, these lattice
models predict that less than 30% of the total void fraction
is isolated even for tortuosity factors of ∼ 10. Therefore,
our di'usion simulations in the much more extensively
connected packing structures are unlikely to be a'ected by
void isolation for the void fractions used throughout our
simulations.

Next, we comment brie<y about the void tortuosities in the
bulk regime reported here and those obtained from Knudsen
simulations using the number-averaged distance between
collisions to estimate the equivalent capillary di'usivity. We
:nd that void tortuosities are greater for Knudsen than for
bulk di'usion, and their ratio increases as the void fraction
decreases for both densi:ed and coarsened solids. Even for
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non-overlapping spheres, tortuosity factors are 2.09 and 1.48
in the Knudsen and bulk regimes, respectively, a :nding that
seems to indicate that a tortuosity factor as de:ned is not a
true geometric property of the void (or surface) space. These
di'erences become larger as the void fraction decreases; for
example, the respective Knudsen and bulk tortuosity factors
are 19.7 and 8.9 for a void fraction of 0.1. Similar discrepan-
cies have been detected without clear resolution in transport
simulations of random binary media (Burganos, 1998) and
assemblies of capillaries (Burganos & Sotirchos, 1989) and
for nuclear magnetic resonance experiments of di'usion in
porous solids (Geier, Vasenkov, & Karger, 2002). We have
concluded that such di'erences re<ect the inappropriate use
of an equivalent capillary Knudsen di'usivity evaluated as
the number-averaged distance between collisions and not
the geometric irrelevance of tortuosity factors. We are cur-
rently exploring rigorous averaging methods to describe the
equivalent di'usivity. In view of this, we have focused the
contents of this manuscript on e'ective di'usivities and tor-
tuosities in the bulk di'usion regime, in which the distribu-
tion of distances between wall collisions is inconsequential
to the mechanism and rate of transport in the void space,
and for which the geometric relevance of tortuosity factors
is unequivocal.

We conclude with some comments about the implica-
tions of the surface tortuosities reported here for our under-
standing of concurrent surface and void di'usion in porous
structures. In contrast with processes involving exclusively
di'usion in the <uid phase, for which kinetic theory or
free-space di'usivities provide independent measures of
mobility, di'usion on surfaces contains inseparable contri-
butions from the mobility and the nature of the connecting
paths. Mobility cannot be rigorously described with existing
knowledge about surface chemistry and migration mecha-
nisms, and cannot be independently measured on equivalent
<at surfaces without signi:cant concerns about :delity. The
length of the surface connecting path is not measurable
without an independent assessment of surface mobility;
the consequent absence of surface tortuosity measurements
impedes our progress in understanding and predicting
contributions from surface di'usion to overall transport
within complex porous structures (Tsotsis, Sane, Webster,
& Goddard, 1986). In this study, we have developed rela-
tions between void and surface tortuosities for solids with a
given void fraction achieved via well-de:ned mechanisms
for void formation and destruction (densi:cation or coars-
ening). In practice, void tortuosities are experimentally
accessible or can be estimated from void fractions using the
simulations described here. Using additional data for sur-
face tortuosities estimated from our simulation results, it is
possible to extract surface mobilities for various molecules
and a given porous structure using Eq. (3) and experimental
e'ective surface di'usivities obtained from total transport
rates properly corrected for the known contribution of dif-
fusion processes in the voids. Together with independent
measures of the surface-to-volume ratio (a�), this provides

a complete interpretation and a useful predictive framework
for parallel di'usion in voids and surfaces within complex
porous structures.

4. Conclusions

In the present work, we describe a new method for simu-
lating surface di'usion and tortuosities in realistic complex
porous structures. Simulations involve tracking mean-square
displacements for many tracer molecules moving via ran-
dom walks on exposed surfaces of packed and overlapped
spheres. The unbiased nature of surface motion and sphere
crossings was con:rmed by rigorous statistics of areal visi-
tation frequencies and by the irrelevance of jump distances
on normalized di'usivities. Surface tortuosities in densi:ed
porous structures reached very large values at void frac-
tions of 0.04 and 0.42, and a minimum value (1.9) at in-
termediate void fractions (∼ 0:26). The large tortuosities at
low and high void fractions correspond to the loss of con-
tinuity in the void and solid phases, respectively, both of
which must be continuous in order to maintain a surface
percolation path. Similar trends were obtained for porous
solids made via coarsening algorithms, except that the solid
phase becomes disconnected only at much higher void frac-
tions, because coarsening procedures involve the random
removal of spheres from a highly densi:ed packing with
signi:cant solid connectivity. Simulations of bulk di'usion
in the void space showed that tortuosity factors for the sur-
face and the void phases are similar, except near the perco-
lation threshold for the solid phase, for which higher void
fractions allow motion through the voids but not through
disconnected surfaces. A similar resemblance between the
tortuosity of the voids and of their de:ning surfaces was
found from simulations of transport in one-dimensional ar-
rays of overlapped hollow spheres for all extents of sphere–
sphere overlap. Comparisons with simple capillary and lat-
tice models of porous structures reveal signi:cant di'er-
ences between the simulated tortuosities of complex porous
structures and those estimated from these simple models.
Our simulation results provide rigorous guidance for esti-
mating e'ective di'usivities and tortuosities in both sur-
face and void phases and for deconvoluting the dynamics of
surface motion from the connectivity of the surface phase
in experimental measurements of e'ective di'usivities in
porous solids within which transport invariably occurs via
parallel motion on the surface and in the intraparticle <uid
phase.

Notation

av surface-to-volume ratio
fg fugacity of the di'using species in the gas phase
fs fugacity of the di'using species in the surface phase
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Cg gas phase concentration, moles per unit void
volume

Cs surface concentration, moles per unit surface area
LD equivalent di'usivity for calculation of void

tortuosity
De overall e'ective di'usivity
De;g e'ective gas phase di'usivity
De;s e'ective surface di'usivity
N total <ux
Ng gas phase contribution to total <ux
Ns surface contribution to total <ux
Lr number-averaged microsphere radius
Lrp mean pore radius
〈R〉 mean tracer displacement
〈R2〉 mean-square tracer displacement
Si microsphere i
t elapsed time
x primary direction of species gradient
Z coordination number for Bethe lattice

Greek letters

� mean free path for gas phase
�s jump distance in surface simulations
� gas molecular velocity or surface mobility
�g gas (void) tortuosity
�s surface tortuosity
� void fraction
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