Rate and Selectivity Enhancements Mediated by OH Radicals in the Oxidative Coupling of Methane Catalyzed by Mn/Na₂WO₄/SiO₂**

Kazuhiro Takanabe and Enrique Iglesia*

The oxidative coupling of methane (OCM) proceeds via complex primary and secondary pathways involving coupled heterogeneous and homogeneous reactions. These reactions form higher hydrocarbons, predominantly ethane and ethene, but also undesired CO_x .^[1,2] Such pathways, which are described in Scheme 1, limit attainable C₂ yields^[3-5] because

Scheme 1. Simplified scheme showing the OCM reaction network and pseudo-first-order rate constants for the respective steps.

of sequential reactions of C₂ products that are more reactive than $CH_4^{[2]}$ at the temperatures required to activate the C–H bonds in CH_4 .^[2] Mn/Na₂WO₄/SiO₂ catalysts are chosen here because of their high selectivity and stability during OCM reactions at such temperatures.^[6–10]

Several studies have described homogeneous (gas-phase) and heterogeneous (surface-catalyzed) OCM reaction networks.^[3-5,11,12] These networks capture most features of the measured rates and selectivities, but contain limited (or phenomenological) descriptions of the surface-mediated steps, often limited to C–H bond activation in CH₄, C₂H₆, and C₂H₄ using active oxygen species.^[3-5,11,12] The remaining inconsistencies between measurements and models have been attributed to other surface-mediated pathways (e.g. quenching of unselective radicals, such as HOO'),^[5,12] reversible CH₄ activation steps,^[12] or to transport restrictions.^[12]

Herein we report the marked effect of H_2O on OCM rates and selectivities caused by the catalytic generation of OH radicals, which react further to activate CH_4 in gas-phase reactions without net H_2O consumption. The high reactivity of these OH radicals weakens the sensitivity of H-abstraction rates on C–H bond energies, as suggested earlier.^[13] The

[*] Dr. K. Takanabe, Prof. E. Iglesia
Department of Chemical Engineering
University of California at Berkeley
Berkeley, CA 94720 (USA)
Fax: (+1) 510-642-4778
E-mail: iglesia@berkeley.edu
Homepage: http://iglesia.cchem.berkeley.edu/

[**] This study was supported by BP as part of the Methane Conversion Cooperative Research Program at the University of California at Berkeley.

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.200802608.

formation of OH radicals from O_2/H_2O mixtures on La_2O_3 and Nd_2O_3 materials that also catalyze OCM has been observed^[14,15] and is proposed to influence OCM rates without concomitant effects on selectivity.^[16] Two patents have described the effect of water on OCM rates and C_2 selectivities on MnO_x -based catalysts, although without mechanistic comment or interpretation.^[17] Herein we rigorously describe the kinetic and mechanistic consequences of H_2O in OCM reactions and provide chemical and isotopic evidence for the involvement of OH radicals in H-abstraction and for the marked consequences of these pathways on attainable C_2 yields. We also comment more generally on the free-energy relations that cause more reactive H-abstractors to weaken the effects of C–H bond energies on reaction rates.

Figures 1 a and 1 b show differential CH₄ conversion rates as a function of contact time and C2+ selectivities as a function of CH₄ conversion, respectively, for Mn/Na₂WO₄/SiO₂ catalysts in gradient-less batch reactors. The CH₄ conversion rates increased with contact time and then decreased as O₂ was depleted in experiments where H₂O was neither added with the reactants nor removed as it formed ("steady state reaction"; Figure 1). The C2+ selectivities remained nearly constant up to around 10% CH4 conversion but decreased at higher conversions (Figure 1b). These rate enhancements do not reflect the temperature gradients generally found for exothermic reactions in flow reactors,^[10] which was ruled out by the lack of kinetic effects upon diluting the catalyst with inert solids (50:1). Recirculation minimizes transport effects by ensuring gradient-less operation and low CH₄ conversion per pass (< 1%).^[18,19]

Rate enhancements with contact time may reflect the kinetic effects of products as they are formed, or of reactants as they are depleted, in gas-phase or surface reactions, or catalyst-structure and site-accessibility changes. Structural changes are inconsistent with the identical rates observed when the reaction mixtures were replaced with fresh CH_4/O_2 reactants. The kinetic effects responsible for rate enhancements may, however, reflect a negative kinetic order in CH_4 or O_2 or a positive order in one or more products (C_2H_6 , C_2H_4 , CO_x , H_2O).

The CH₄ conversion rates, as measured by extrapolation to zero conversion in a flow-reactor, were found to be proportional to CH₄ pressure and the square root of the O₂ pressure; these data rule out reactant depletion as the cause of the observed rate enhancements and agree with previous reports.^[9] These kinetic data are consistent with the kinetic relevance of CH₄ activation by dissociated oxygen atoms (O*), which are formed by quasi-equilibrated O₂ dissociation as shown in the elementary steps (1)–(5), where *, M, and [O₂] denote sites, "third bodies" required to dissipate energy

Communications

Figure 1. Plots of differential CH₄ conversion rate vs. contact time (a) and C₂₊ selectivity vs. CH₄ conversion (b); S: selectivity, C: conversion. \Rightarrow : H₂O removed; \Rightarrow : steady state reaction; \blacksquare : H₂O added (0.02 g, 1073 K, unit volume: 275–650 mL, 10.7 kPa CH₄, CH₄/O₂ 6:1, 0.4 kPa H₂O (when added), 101 kPa total pressure, balance He).

$$O_2 + 2^* \xrightarrow{K_{O_2}} 2 O_s^*; \xrightarrow{d} denotes quasi-equilibrium (1)$$

$$CH_4 + O_s^* \xrightarrow{CH_4} CH_3^* + OH^*$$
 (2)

$$2 \text{ OH}^* \longrightarrow \text{H}_2\text{O} + \text{O}^* + * \tag{3}$$

$$2 \operatorname{CH}_3^{-} + \mathrm{M} \longrightarrow \mathrm{C}_2 \mathrm{H}_6^{-} + \mathrm{M}$$
(4)

$$CH_3 + \alpha[O_2] \longrightarrow CO_x$$
(5)

during radical recombination, and active oxygen atoms involved in CO_x formation (which may differ from O*), respectively. The CH_4 conversion rates are given by Equation (6) at low O* coverages, which is consistent with the measured rates.

The C_2 products may cause rates to increase with increasing conversion by initiating homogeneous chain

$$CH_{4} = k' \frac{P}{CH_{4}} \frac{P^{1/2}}{O_{2}}$$
(6)

cycles, and ${}^{13}CH_4/O_2/{}^{12}C_2H_6$ or ${}^{13}CH_4/O_2/{}^{12}C_2H_4$ mixtures gave CH₄ conversion rate constants (k_1, k_2) identical to those without C₂H₆ or C₂H₄. Thus, C₂ products cannot account for the observed rate enhancements. ${}^{12}CH_4$ was not detected at any ${}^{13}CH_4$ conversion, which is consistent with the irreversible nature of the steps involving hydrocarbons in Scheme 1.

Water may influence OCM reactions via OH-mediated pathways produced by H_2O activation on oxide surfaces.^[16] This proposal was tested by removing H_2O as it formed (" H_2O removed" in Figure 1) and by adding H_2O to CH_4/O_2 reactant mixtures (" H_2O added"). The removal of H_2O eliminated rate enhancements with conversion and led to rates that decreased with contact time because of depletion of CH_4 and O_2 (Figure 1a). The C_2 selectivities decreased markedly as CH_4 conversion increased when H_2O was removed (Figure 1b). In contrast, adding H_2O to CH_4/O_2 reactant mixtures increased initial conversion rates and C_2 selectivities markedly and weakened the effects of contact time on rates (Figures 1 a and 1 b).

 H_2O/O_2 mixtures form OH radicals on La_2O_3 -based OCM catalysts in a similar manner to CH₃⁻ radicals [step 2 above; Eq. (7)],^[16] where OH and OH* denote radicals and chemisorbed species, respectively, and O_s* forms via step 1. The quasi-equilibria of steps 1, 3, and 7 mean that the equilibrium OH radical concentrations at 1173 K on La_2O_3 reflect the thermodynamics of the overall reaction [Eq. (8)].^[15] We suggest here that H₂O increases OCM rates via OH-mediated homogeneous steps that abstract H-atoms from CH₄ [Eq. (9)].

$$H_2O + O_s^* \longrightarrow OH^* + OH^*$$
(7)

$$O_2 + 2 H_2 O \underbrace{K_{OH}}_{K_{OH}} 4 OH.$$
(8)

$$CH_4 + OH \stackrel{K_{CH_4}}{\longrightarrow} CH_3 + H_2O$$
(9)

The incremental rate (via step 9) using the OH radicals formed in step 8 is given by the second term in Equation (10)

$$r_{\rm CH_4} = k' P_{\rm CH_4} P_{\rm O_2}^{1/2} + k'' P_{\rm CH_4} P_{\rm O_2}^{1/4} P_{\rm H_2O}^{1/2}$$
(10)

with $k' = k_{CH_4} k_{O_2}^{1/2}$ and $k'' = k'_{CH_4} K_{O_2}^{1/4}$. Figure 2 shows the expected linear dependence on $P_{O_2}^{1/4} P_{H_2O}^{1/2}$ at short contact times (obtained from measured differences in rates with and without H₂O). The observed decrease in CH₄ conversion rate (Figure 2) reflects O₂ dissociation (step 1) steps that are no longer in equilibrium, as O₂ is depleted and H₂O concentration increases with increasing conversion. As a result, the rate of formation of O* decreases, and this species is scavenged more effectively by reactions with CH₄ via OH-mediated pathways that deplete O* to replenish OH as it reacts.

0.35 0.30 Contact 0.25 time Incremental 0.20 differential CH conversion rate 0.15 IP_{CH₄} /µmol g⁻¹ s⁻¹ kPa⁻ 0.10 0.05 0.00 0.2 0.4 0.6 0.8 1.0 0.0 1.2 1.4 P₀,^{1/4}P_{H,0}^{1/2} /kPa^{3/4}

Figure 2. Plot of incremental differential CH₄ conversion rate (obtained from measured differences in rates with and without H₂O) vs. $P_{O_2}^{1/4}$. $P_{H_2O}^{1/2}$. \bullet : steady state reaction; \blacksquare : H₂O added. The arrows indicate the increase in contact time (0.02 g, 1073 K, unit volume: 550–650 mL, 10.7 kPa CH₄, CH₄/O₂ 6:1, 0.4 kPa H₂O (when added), 101 kPa total pressure, balance He).

The quasi-equilibrated nature of step 8 would lead to weak kinetic isotope effects (KIE) for $CH_4/O_2/H_2O$ and $CH_4/O_2/D_2O$ mixtures because OH activation precedes kinetically relevant steps. The measured H_2O/D_2O KIE value was 1.1. The CH_4/CD_4 KIE values for surface-catalyzed and homogeneous OH-mediated paths (steps 2 and 9) were found to be similar to each other and larger (1.3–1.4) than the H_2O/D_2O isotope effects, which is consistent with the involvement of C– H bonds in kinetically relevant steps and quasi-equilibrated formation of OH radicals via fast H_2O activation, even though the O–H bonds in H_2O (497 kJ mol⁻¹) are stronger than the C–H bonds in CH_4 (439 kJ mol⁻¹).^[20] These trends reflect the stronger adsorption of H_2O than CH_4 on the vacant sites prevalent on oxides during OCM catalysis.

OH radicals, however, also activate C–H bonds in C_2H_6 and C_2H_4 ; yet, H_2O leads to higher C_2 selectivities (Figure 1b), apparently because OH radicals activate C–H bonds in C_2 molecules with less specificity (relative to CH₄) than oxide surfaces. ¹³CH₄/O₂/C₂H₆ and ¹³CH₄/O₂/C₂H₄ mixtures allowed accurate estimates for all rate constants in Scheme 1 $(k'_1-k'_5)$ with and without H₂O to be obtained (Table 1). All rate constants were larger when H₂O was present, although those for CH₄ activation showed the largest increase. As a result of these OH-mediated activation pathways, the k'_1/k'_1 ratios decreased for all species, thus causing the observed increase in C₂ selectivities and yields with H₂O.

Figure 3 gives the rate constant ratios reported for Habstraction from CH₄ and C₂H₆ ($k_{CH_4}^R/k_{C,H_6}^R$) in homogeneous reactions with various abstractors (R).^[5,21] This ratio increases as the RH products become more stable (R + H \rightarrow R–H, more exothermic). These abstraction reactions become less sensitive ($k_{CH_4}^R/k_{C_2H_6}^R$ is larger) to differences in energy between the C–H bonds in CH₄ and C₂H₆ (CH₄: 439 kJ mol⁻¹; C₂H₆: 423 kJ mol⁻¹)^[20] as the abstraction products become more stable, as is also the case for the relative

Table 1: First-order rate constants (μ molg⁻¹s⁻¹kPa⁻¹) for the steps shown in Scheme 1 (0.02 g, 1073 K, 10.7 kPa¹³CH₄, 1.7 kPa O₂, 0.4 kPa¹²C₂H₆/¹²C₂H₄, 0 or 0.4 kPa H₂O).

Surface-mediated	OH-mediated ^[a]
0.05	0.16
0.01 (0.25)	0.02 (0.11)
1.7 (33)	1.1 (6.8)
0.14 (2.7)	0.12 (0.73)
0.22 (4.3)	0.10 (0.63)
0.03	0.14
	Surface-mediated 0.05 0.01 (0.25) 1.7 (33) 0.14 (2.7) 0.22 (4.3) 0.03

[a] Calculated from rate differences with and without H₂O; [b] calculated from $^{13}CH_4/O_2/C_2H_6(/H_2O)$ mixtures; [c] calculated from $^{13}CH_4/O_2/C_2H_4(/H_2O)$ mixtures.

Figure 3. Ratios of rate constants $k_{CH_4}^R/k_{C_2H_6}^R$ for H-abstraction from CH₄ relative to C₂H₆ for various abstracting entities (R) vs. ΔH for the recombination reaction R + H \rightarrow R–H at 1073 K.

rates of HCHO and CH₄ oxidation via homogeneous pathways.^[22] OH radicals lead to very exothermic H-abstraction reactions and to the highest $k_{CH_4}^R/k_{C_2H_6}^R$ ratios (Figure 3). Consistent with this, the involvement of OH radicals in Habstraction increases the { $(k'_1 + k'_2)/(k'_3 + k'_4)$ } ratios markedly, from 0.03 for surface-mediated pathways to 0.14 for OHmediated pathways (Table 1).

H₂O also leads to lower k'_5/k'_1 ratios (4.3 without H₂O; 0.63 for OH-mediated pathways; Table 1), which is consistent with the preferential enhancement of CH₄ over C₂H₄ activation rates by OH-mediated routes. Surfaces oxidize C₂H₄ (k'_5) more effectively than CH₄ (k'_2) or C₂H₆ (k'_4), in spite of the strong C–H bonds in C₂H₄ (463 kJ mol⁻¹),^[20] apparently because C₂H₄ is strongly adsorbed.^[23] OH-mediated pathways do not involve adsorption and lead to k'_5/k'_1 values below unity (0.63). These ratios faithfully reflect the stronger C–H bonds in C₂H₄, without compensation by adsorption energies. In fact, these previously unrecognized OH-mediated pathways are essential to achieving the maximum C₂ yields reported (up to 26%), which could not be reached with contributions from surface-mediated pathways only.

We have achieved C_{2+} yields of 26% by replenishing O_2 after it is depleted in order to avoid explosive reactant mixtures (Figure 4). These yields match the highest values

Communications

Figure 4. Plot of C₂₊ yield vs. CH₄ conversion for experimental data and pseudo-first-order kinetic models using the rate constants shown in Table 1. (0.02 g, 1073 K, unit volume: 550 mL, 4.0 kPa CH₄, 1.3 kPa O₂ (initial), 1.5 kPa O₂ (added) 101 kPa total pressure, balance He). -----: the "dry" model; -----: the "wet" model.

reported previously.^[6] A kinetic model based on Scheme 1 and rate constants for surface- and OH-mediated pathways (Table 1; see the Supporting Information for further details) accurately describes the measured yields and predicts a maximum possible C_2 yield of 29%. Figure 4 shows that the rate constants for surface-mediated pathways, which prevail in the absence of H₂O, cannot account for observed C_2 yields and predict maximum values of only 15%.

In summary, this study provides mechanistic evidence that OH-mediated C–H bond activation pathways are essential for attaining practical yields and describing the evolution of C_2 yields during catalytic reactions. The ability of oxide catalysts to generate equilibrium OH-radical concentrations provides opportunities to exploit pathways mediated by such radicals in related chemistries. Our data provide compelling evidence for the benefits of using more reactive species (or higher temperatures) to weaken the sensitivity of H-abstraction reactions to C–H bond energies, a challenge and hurdle that limits the maximum attainable yields of the desired products in most practical applications of oxidation catalysis.^[24]

Experimental Section

 $\rm SiO_2$ (Davison chemical, Silica Gel Grade 57) was impregnated with aqueous $\rm Mn(NO_3)_2$ (50 wt. %, STREM Chemicals; 2 mL g⁻¹ of SiO_2) and the mixture dried in ambient air at 403 K for 5 h.^[8] This sample was then impregnated with an aqueous solution of Na_2WO_4·2H_2O (99%, Sigma–Aldrich, 2 mL g⁻¹ of SiO_2) to give a sample containing 2 wt.% Mn and 5 wt.% Na_2WO_4. This sample was dried at 403 K for 5 h and then heated in flowing dry air (Praxair, UHP, 0.167 mL s⁻¹) at 1173 K (temperature increase: 0.033 K s⁻¹) for 8 h. The samples were sieved to retain 0.25–0.35-mm aggregates.

OCM rates and selectivities were measured in flow or recirculating batch reactors using a U-shaped quartz cell (4 mm I.D.).^[18] Samples (0.02 g) were mixed with quartz powder (0.5 g; Fluka, SiO₂, 0.25–0.35 mm) and held onto quartz wool. The temperature was maintained with a Watlow controller (Series 982) coupled to a resistively heated furnace and measured with a type K thermocouple set outside the catalyst bed. CH_4 (Praxair, 99.999%) and O_2 (Praxair, 99.999%) were introduced with He (Praxair, 99.999%) as diluent. In batch experiments, the recirculation loop (275-650 mL) was evacuated to < 0.1 Pa before introducing the reactants, which were circulated with a graphite gear micropump (> 2.5 mLs^{-1}). H₂O was removed from the reactor loop using a dry ice/acetone trap, which does not condense other products. Reactant and product concentrations were measured with an HP5890 gas chromatograph using a Carbosieve SII packed column (Supelco, 3.2 mm × 2 m) with thermal conductivity detection and a HP-PLOT Q capillary column (Agilent, $0.32 \text{ mm} \times 30 \text{ m}$) with flame ionization detection. Differential rates were obtained from time-derivatives of CH₄ concentration profiles vs. time measured in batch reactors after regression to a polynomial fit. Selectivities are reported on a carbon basis as cumulative (integral) values

CD₄ (Isotec, 99 atom %-D) and D₂O (Cambridge Isotope Laboratories, Inc., 99.9%) were used to measure kinetic isotope effects. Tracer studies used labeled $^{13}\text{CH}_4$ (Isotec, 99 atom %- ^{13}C) in the presence of $^{12}\text{C}_2\text{H}_6$ (Praxair, 99.999%) or $^{12}\text{C}_2\text{H}_4$ (Praxair, 99.999%). These isotopic measurements were carried out in a batch recirculating reactor equipped with two HP5890 gas chromatographs, with combined thermal conductivity, flame ionization and mass selective detectors. The latter was connected to an HP-PLOT Q capillary column used for isotopic detection.

Received: June 4, 2008 Published online: September 2, 2008

Keywords: hydrogen abstraction · kinetics ·

oxidative coupling of methane \cdot radical reactions \cdot reaction mechanisms

- [1] G. E. Keller, M. M. Bhasin, J. Catal. 1982, 73, 9-19.
- [2] J. H. Lunsford, *Catal. Today* **2000**, *63*, 165–174.
- [3] a) J. A. Labinger, K. C. Ott, J. Phys. Chem. 1987, 91, 2682-2684;
 b) J. A. Labinger, Catal. Lett. 1988, 1, 371-376.
- [4] a) S. C. Reyes, E. Iglesia, C. P. Kelkar, *Chem. Eng. Sci.* 1993, 48, 2643–2661; b) S. C. Reyes, C. P. Kelkar, E. Iglesia, *Catal. Lett.* 1993, 19, 167–180.
- [5] C. A. Mims, R. Mauti, A. M. Dean, K. D. Rose, J. Phys. Chem. 1994, 98, 13357–13372.
- [6] A. Palermo, J. P. H. Vazquez, A. F. Lee, M. S. Tikhov, R. M. Lambert, J. Catal. 1998, 177, 259–266.
- [7] X. Fang, S. Li, J. Lin, J. Gu, D. Yang, J. Mol. Catal. (China) 1992, 6, 427.
- [8] D. Wang, M. P. Rosynek, J. H. Lunsford, J. Catal. 1995, 155, 390– 402.
- [9] S. Pak, P. Qiu, J. H. Lunsford, J. Catal. 1998, 179, 222-230.
- [10] S. Pak, J. H. Lunsford, Appl. Catal. A 1998, 168, 131-137.
- [11] A. J. Colussi, V. T. Amorebieta, J. Catal. 1997, 169, 301-306.
- [12] Y. S. Su, J. Y. Ying, W. H. Green, J. Catal. 2003, 218, 321-333.
- [13] J. A. Labinger, J. Mol. Catal. A 2004, 220, 27-35.
- [14] L. C. Anderson, M. Xu, C. E. Mooney, M. P. Rosynek, J. H. Lunsford, J. Am. Chem. Soc. 1993, 115, 6322-6326.
- [15] K. B. Hewett, L. C. Anderson, M. P. Rosynek, J. H. Lunsford, J. Am. Chem. Soc. 1996, 118, 6992–6997.
- [16] K. B. Hewett, M. P. Rosynek, J. M. Lunsford, Catal. Lett. 1997, 45, 125-128.
- [17] a) A. M. Gaffney, US Patent, 4788372, 1988; b) D. W. Leyshon, US Patent, 4801762, 1989.
- [18] E. Iglesia, J. E. Baumgartner, G. L. Price, K. D. Rose, J. L. Robbins, J. Catal. 1990, 125, 95–111.

7692 www.angewandte.org

© 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

- [19] J. A. Roos, S. J. Korf, R. H. J. Veehof, J. G. van Ommen, J. R. H. Ross, *Appl. Catal.* **1989**, *52*, 131–145.
- [20] S. J. Blanksby, G. B. Ellison, Acc. Chem. Res. 2003, 36, 255-263.
- [21] GRI-Mech v.3.0. G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, W. C. Gardiner, Jr., V. V. Lissianski, Z. Qin, http://www.me.berkeley.edu/gri_mech/.
- [22] J. M. Zalc, W. H. Green, E. Iglesia, Ind. Eng. Chem. Res. 2006, 45, 2677–2688.
- [23] J. A. Dumesic, D. F. Rudd, L. M. Aparicio, J. E. Rekoske, A. A. Treviño, *The Microkinetics of Heterogeneous Catalysis*, American Chemical Society, Washinton, DC, **1993**.
- [24] a) C. Batiot, B. K. Hodnett, *Appl. Catal. A* 1996, *137*, 179–191;
 b) A. Costine, B. K. Hodnett, *Appl. Catal. A* 2005, *290*, 9–16.