Coupling Alkane Dehydrogenation with Hydrogenation Reactions on Cation-Exchanged Zeolites

Wei Li, Sara Y. Yu, and Enrique Iglesia

Department of Chemical Engineering, University of California at Berkeley, Berkeley, CA 94720

Thiophene desulfurization was achieved using hydrogen surface species formed during dehydrogenation of alkanes on H-ZSM5 modified by exchanged cations (M = Co, Mo, Zn) with the selective formation of H_2S without direct involvement of the H_2 formed in alkane reactions. Thiophene reactions in the absence of a hydrogen source (H_2, C_3H_8) lead to significant formation of benzothiophene and dibenzothiophene by-products. Propane markedly increases desulfurization rates and H₂S selectivities, while inhibiting catalyst deactivation on all catalysts. Rates, selectivities, and deactivation rates using propane (20 kPa) as a direct hydrogen source are equivalent to those obtained at >200 kPa H₂ on H-ZSM5 and to 50-100 kPa H₂ on Co/H-ZSM5 and much higher than at the H₂ pressures prevalent during alkane reactions (1-2 kPa). Alkane reactions on M/H-ZSM5 are limited by hydrogen desorption bottlenecks that lead to surface hydrogen chemical potentials higher than those in the contacting H₂ gas phase. The addition of these hydrogen species to thiophene leads to the observed desulfurization, which provides an alternate path for hydrogen removal and leads to higher alkane dehydrogenation rates. This synergistic coupling occurs on H-ZSM5, but cations appear to provide a promotional effect. Cations provide recombinative desorption sites that decrease the availability and chemical potential of adsorbed hydrogen, but they also appear to be involved in providing alternate binding sites for hydrodesulfurization reactions.

1. INTRODUCTION

Sulfur compounds in crude oil often remain in fuels, leading to their release and to the poisoning of exhaust catalysts. Environmental concerns and legislation will lead to a significant decrease in the sulfur content of diesel and gasoline fuels (400 to <40 ppm) [1]. Catalytic cracking (FCC) naphtha contributes most of the sulfur compounds in gasoline [1]. Some desulfurization via hydrogen transfer to form H_2S occurs during FCC, but thiophene and alkylthiophenes remain largely unreacted and can adsorb on FCC catalysts, leading to SO_x release during regeneration [2]. Sulfur removal from FCC naphtha requires hydrodesulfurization processes that lead to significant hydrogenation of high-octane alkenes and aromatics. Thiophene desulfurization without significant saturation and H₂ requirements would provide alternate process options and mechanistic details of largely unexplored hydrogen transfer reactions. This study explores one example of such chemistry - the desulfurization of thiophene with selective formation of H₂S using alkanes as direct hydrogen sources on cation-exchanged zeolites.

Alkane dehydrogenation and dehydrocyclodimerization on cation-modified H-ZSM5 lead to hydrogen removal bottlenecks that limit reaction rates and lead to the formation of hydrogen-rich cracking products [3, 4]. This bottleneck causes the chemical potential of adsorbed hydrogen to be significantly higher than that of H_2 in the contacting gas phase, leading to the hydrogenation of adsorbed species that can cause the undesired formation of hydrogen-rich light alkanes as a side product of dehydrogenation reactions to remove the desorption bottleneck and to upgrade unsaturated molecules such as O_2 , CO, and CO₂ [6]. Here, we report the hydrogenation reactions on H-ZSM5 modified by exchanged Co, Zn, and Mo.

2. EXPERIMENTAL METHODS

2.1. Catalyst Preparation and Elemental Analysis

Na-ZSM5 (Zeochem, Si/Al = 14.5) was converted to the ammonium form (NH₄-ZSM5) by exchange with a 0.16 M NH₄NO₃ solution (Fisher, Certified ACS, >98.0%) at 353 K for 16 h four times using fresh NH₄NO₃ solutions to ensure complete exchange. The zeolite sample was filtered and washed with deionized water. Samples were dried in air at 398 K for 20 h and calcined at 773 K for 20 h in flowing dry air to convert to the proton form of the zeolite (H-ZSM5). Co/H-ZSM5 was prepared by ion exchange of H-ZSM5 at 353K for 16 h in a 0.05 M Co(NO₃)₂ solution (Aldrich, 99%). The sample was filtered, washed with deionized water, dried in air at 398 K for 20 h, and then treated in flowing dry air at 773 K for 20 h. Atomic absorption spectroscopy (Galbraith Laboratories, Inc.) measured a Co content of 0.91 wt% (Co/Al = 0.15). Co⁺² isolated cations are located at the exchange site and replace two Brønsted acid sites during exchange. These characterization data will be reported elsewhere [7]. Zn/H-ZSM5 was prepared by aqueous exchange methods that lead to the predominant formation of Zn⁺² cations bridging two Al sites [8]. Mo/H-ZSM5 was prepared by solid-state exchange methods using MoO₃/H-ZSM5 physical mixtures, which lead to the formation of (Mo₂O₅)⁺² dimers interacting with two Al sites [9].

2.2. Catalytic Thiophene Desulfurization

Thiophene desulfurization studies were performed in a tubular reactor with plug-flow hydrodynamics. Rates, selectivities, and deactivation behavior were measured at 773 K using C_3H_8 (20 kPa)/C₄H₄S (1 kPa), H₂ (0-200 kPa)/C₄H₄S (1 kPa), or pure C₄H₄S (1 kPa) reactants. C₃H₈ (Praxair, >99.5%) was purified using O₂/H₂O traps (Matheson) and C₄H₄S (Aldrich, >99%) was used without purification. H₂ (Praxair, UHP) and He (Praxair, UHP) were purified using O₂ and 13X sieve traps (Matheson). Reactant and product concentrations were measured by gas chromatography (Hewlett-Packard 6890) using capillary (HP-1 Crosslinked Methyl Siloxane, 50m x 0.32mm, 1.05 μ film) and packed columns (Hayesep-Q, 80/100 mesh, 10' x 0.125") and flame ionization and thermal conductivity detection. Thiophene reaction rates are reported as molar thiophene conversion rates per Al or per residual OH group after exchange. Isotopic exchange (D₂-OH) experiments were used to determine the number of residual OH groups [8, 9]. Sulfur selectivities are reported on a sulfur basis as the percentage of sulfur from the converted thiophene that appears in each sulfur-containing product. Propane conversions were <15% in all experiments. Thiophene conversions varied over a much wider range and, when required, were converted to rate constants using the first-order rate expression obtained in independent kinetic experiments. The rate constants correspond to rates expressed as mole thiophene/mole OH-s. The deactivation behavior of the catalysts was studied at a constant space velocity.

3. RESULTS AND DISCUSSION

3.1. Effect of Propane on Thiophene Desulfurization

Thiophene desulfurization rates (per OH group) on H-ZSM5, Co/H-ZSM5, and Zn/H-ZSM5 are shown in Figure 1 with and without C_3H_8 as a co-reactant. In the absence of C_3H_8 , desulfurization proceeds slowly and leads to H_2S , benzothiophene (BT), and dibenzothiophene. The larger sulfur compounds can form via thiophene desulfurization to H₂S and subsequent reaction of thiophene fragments with another thiophene or via bimolecular Diels-Alder reactions of two thiophene molecules [10, 11]. Propane (20 kPa) markedly increases thiophene desulfurization rates on all three catalysts, apparently by increasing the availability of hydrogen adatoms required for C-S bond activation and for the hydrogenation of thiophene fragments. The rates reported in Figure 1 were obtained at high but similar C₄H₄S conversions (65-85%), which are not limited by thermodynamics [12], and low C_3H_8 conversions (<15%). Thus, they reflect the relative catalytic activities of these materials in spite of the integral reactor conditions imposed by the high thiophene conversions. A kinetic analysis using the measured first order rate dependence on C₄H₄S concentration was used to rigorously calculate reaction rate constants (k). For example, the addition of propane increases the value of k from 1.55 to 26.2 cm³/mole OH-s on H-ZSM5 and from 6.45 to 39.9 cm³/mole OH-s on Co/H-ZSM5.

rates with and without propane [773 K, 1 kPa C_4H_4S , 0 or 20 kPa C_3H_4 , balance He]

The availability of reactive adsorbed hydrogen species with C_3H_8 as a co-reactant also influences thiophene desulfurization selectivity (Figure 2). The (H₂S/BT) ratio is significantly higher when C_3H_8 is present; hydrogen species are used to hydrogenate unsaturated thiophene fragments and to decrease the probability of direct or indirect thiophene self-reactions that lead to more refractory organosulfur compounds.

In addition, the coupling of propane dehydrogenation with thiophene desulfurization not only increases the rate of thiophene desulfurization, but also increases the rate of propane conversion based on our preliminary results using ¹³C-labeled propane and unlabeled thiophene reactants, in agreement with the concept of kinetic coupling.

3.2. Effect of Cations on Thiophene Desulfurization

The effect of Co, Mo, and Zn cations on the rate of propane-thiophene reactions is shown in Table 1 for a set of samples with similar M/Al ratios. Also reported in Table 1 are the OH densities of each sample, obtained from D2-OH isotopic exchange measurements after cation exchange. H-ZSM5, which contains predominantly Brønsted acid sites associated with Al sites (OH/Al~1), catalyzes propane-thiophene reactions, suggesting that such sites can be used to activate both propane and thiophene reactants. This is in agreement with a recent theoretical study which showed that thiophene desulfurization occurs on acidic zeolites in the presence of H_2 [10]. Thiophene desulfurization was proposed to proceed via a two-step pathway: opening of the thiophene ring on the Brønsted acid site, and removal of sulfur as H_2S and formation of butadiene in the presence of H_2 . Butadiene is expected to be too reactive to be isolated and is rapidly converted to aromatics on H-ZSM5. Reaction rates (normalized by the number of Al atoms) are slightly higher on Co- and Zn-exchanged samples than on H-ZSM5, even though each divalent cation has replaced about two Brønsted acid sites during exchange. In the case of Mo/H-ZSM5, the severe conditions required for solid-state exchange lead to significant dealumination [9], and desulfurization rates are lower than on H-ZSM5 because of their very low OH/Al ratios (Table 1).

Reaction rates normalized instead by the number of residual OH groups show a much greater effect of cations, suggesting that cations enhance the activity of the catalysts, either by providing parallel desulfurization pathways or by introducing bifunctional desulfurization pathways (Table 1). Cations appear to have two counteracting effects on propane-thiophene reactions. Cations increase the rate of recombinative hydrogen desorption during alkane reactions and thus decrease the availability of surface hydrogen for desulfurization reactions [4-6]. On the other hand, cations can provide binding sites for thiophene adsorption and reactions, which can intercept recombinative desorption steps and scavenge hydrogen before desorption as H_2 . Na and K cations in H-ZSM5 have been shown to bind sulfur compounds, such as thiophene and H_2S [13, 14].

100, 200 [775 K, 1 Kl a C41145, 20 Kl a C3118, 0alallee 110]							
Catalyst	M/Al Ratio	OH/Al Ratio	Desulfurization Rate (per Al, 10 ⁻³ , s ⁻¹)	Desulfurization Rate (per OH group, 10 ⁻³ , s ⁻¹)			
H-ZSM5	0	0.97	0.62	0.64			
Co/H-ZSM5	0.15	0.71	0.79	1.11			
Mo/H-ZSM5	0.18	0.25	0.22*	0.88*			
Zn/H-ZSM5	0.14	0.72	0.91	1.26			

Table 1: Comparison of thiophene desulfurization rates on H-ZSM5 and M/H-ZSM5 (M=Co, Mo, Zn) [773 K, 1 kPa C₄H₄S, 20 kPa C₃H₈, balance He]

* measured at 3 kPa; corrected to 1 kPa thiophene using measured rate expression

3.3. C₃H₈ and H₂ as Hydrogen Sources on H-ZSM5 and Co/H-ZSM5

 C_3H_8 and H_2 were compared as hydrogen sources by measuring thiophene desulfurization rates and selectivities using C_3H_8/C_4H_4S and also H_2/C_4H_4S reactant mixtures with varying H_2 concentrations on H-ZSM5 and Co/H-ZSM5 (Table 2).

	H-ZSM5			Co/H-ZSM5				
Gas Phase	Thiophene	(H ₂ S/	Gas Phase	Thiophene	(H ₂ S/			
Pressure of	Desulfurization	BT)	Pressure of	Desulfurization	BT)			
Hydrogen	Rate (per residual	Molar	Hydrogen	Rate (per residual	Molar			
Source (kPa)	OH group, 10^{-3} , s^{-1})	Ratio	Source (kPa)	OH group, 10^{-3} , s^{-1})	Ratio			
0	0.067	3.45	0	0.26	5.56			
100 (H ₂)	0.13	5.67	25 (H ₂)	0.83	27.9			
200 (H ₂)	0.28	6.57	50 (H ₂)	1.01	43.0			
20 (C ₃ H ₈)	0.62	31.3	_100 (H ₂)	1.29	129			
			20 (C ₃ H ₈)	1.08	71.4			

Table 2: Comparison of thiophene desulfurization rates and (H_2S/BT) molar ratios in the presence of H_2 or propane on H-ZSM5 and Co/H-ZSM5 [773 K, 1 kPa C₄H₄S, 0-200 kPa H₂ or 20 kPa C₃H₈, balance He]

At the pressures and conversions of our study, C_3H_8 reactions lead to gas phase H_2 pressures of 0-0.5 kPa on H-ZSM5 and 0-2 kPa on Co/H-ZSM5. The higher H_2 pressures on Co/H-ZSM5 reflect the effect of cations on the rate and H_2 selectivity of propane reactions, as previously reported also on Ga- and Zn-exchanged H-ZSM5 [4, 15]. The direct use of hydrogen from alkanes without the involvement of H_2 , is demonstrated by the higher desulfurization rates obtained with C_3H_8 (at 20 kPa) than with H_2 at pressures even higher than those existing during propane reactions on both H-ZSM5 and Co/H-ZSM5 (Table 2).

On H-ZSM5, desulfurization rates and (H₂S/BT) ratios using 20 kPa propane exceed those obtained with 200 kPa H₂ (Table 2). Increasing H₂ pressures slightly increase desulfurization rates and H₂S selectivities; these effects are directionally similar to those obtained when propane is introduced as a hydrogen source and they suggest that H adatoms formed from propane and H₂ are kinetically similar. Clearly, the H₂ available during propane-thiophene reactions cannot account for the high desulfurization rates obtained using propane as the hydrogen source. The (H₂S/BT) ratio also reflects hydrogen availability and the effectiveness of the hydrogen source. (H₂S/BT) ratios are higher with C₃H₈ (20 kPa) than with 200 kPa H₂ (Table 2) confirming our conclusion that propane reactants lead to hydrogen surface concentrations that exceed those that would exist in equilibrium with 200 kPa H₂ on H-ZSM5. A hydrogen desorption bottleneck on H-ZSM5 leads to high chemical potentials of adsorbed hydrogen species, which are effectively used in hydrogenation reactions of thiophene species with the selective formation of H₂S and aromatics via pathways similar to those involved using H₂ as the hydrogen source.

On Co/H-ZSM5, desulfurization rates with 20 kPa C_3H_8 are similar to those achieved with 50-100 kPa H₂ (Table 2). (H₂S/BT) ratios increase with increasing H₂ pressure and reach values similar to values obtained with C_3H_8 co-reactants also at 50-100 kPa H₂. This equivalent H₂ pressure (50-100 kPa) is lower on Co/H-ZSM5 than on H-ZSM5 (>200 kPa), because Co cations catalyze hydrogen adsorption-desorption steps. As a result, the availability of surface hydrogen is lower than on H-ZSM5 and H₂ can be more effectively used as a source of hydrogen than on H-ZSM5. Thiophene desulfurization rates for H₂/C₄H₄S mixtures with H₂ pressures (1-2 kPa) typically present during propane reactions, however, were lower than for C₃H₈/C₄H₄S mixtures; therefore, desulfurization does not require gas phase H₂ on Co/H-ZSM5. Zn cations in H-ZSM5 show similar effects on the rate of hydrogen removal and on the equivalent H₂ pressure obtained during propane-thiophene reactions [12].

Figure 3: Comparison of first order deactivation rate constant (k_d) in the presence of propane or H_2 on Co/H-ZSM5 [773 K, 1 kPa C₄H₄S, 20 kPa C₃H₈ or 0-100 kPa H₂, balance He, Co/Al=0.15]

Catalyst deactivation rates also depend on the availability of surface hydrogen species that decrease the level of unsaturation and increase the reactivity of strongly adsorbed carbonaceous deposits. Deactivation rates are proportional to the concentration of undeactivated catalytic sites. Treatment in 20% O2 at 773 K restores initial desulfurization rates, suggesting that deactivation can be reversed by combustion of carbonaceous deposits. Deactivation rate constants (k_d) with propane-thiophene reactants (0.014 h⁻¹) are much lower than with pure thiophene (0.49 h^{-1}). H₂ coreactants also decrease deactivation rate constants, approaching the values obtained with propane at 50-100 kPa of H₂ (0.060-0.021 h^{-1}) (Figure 3). Thus, reactions of propane-thiophene mixtures on Co/H-ZSM5 show deactivation behavior that reflects a surface with hydrogen

chemical potential similar to that present with 50-100 kPa H₂ in the contacting gas phase.

REFERENCES

- 1. EPA Staff Paper on Gasoline Sulfur Issues, 1998, U.S. Environmental Protection Agency Office of Mobile Sources.
- 2 Wormsbecher, R.F., Weatherbee, G.D., Kim, G., and Dougan, T.J., National Petroleum Refiners Association Annual Meeting 1993, San Antonio, TX.
- 3. Biscardi, J.A. and Iglesia, E., J. Phys. Chem. B, 102 (1998) 9284.
- 4. Biscardi, J.A. and Iglesia, E., J. Catal., 182 (1999) 117.
- 5. Yu, S.Y. and Iglesia, E., J. Phys. Chem., manuscript in preparation.
- 6. Iglesia, E. and Baumgartner, J.E., Catal. Lett., 21 (1993) 55.
- 7. Li, W., Yu, S.Y., Meitzner, G.D., Yu, G. and Iglesia, E., J. Phys. Chem., manuscript in preparation.
- 8. Biscardi, J.A., Meitzner, G.D., and Iglesia, E., J. Catal., 179 (1998) 192.
- Borry, R.W., Kim, Y.-H., Huffsmith, A., Reimer, J.A., and Iglesia, E., J. Phys. Chem. B, 103, (1999) 5787.
- Saintigny, X., van Santen, R.A., Clemendot, S., and Hutschka, F., J. Catal., 183 (1999) 107.
- Benders, P.H., Reinhoudt, D.N., and Trompenaars, W.P., "Cycloaddition Reactions of Thiophenes, Thiophene 1-Oxides, and 1, 1-Dioxides." Thiophene and Its Derivatives, ed. S. Gronowitz, Wiley, New York, 1985.
- 12. Yu, S.Y., Li, W., and Iglesia, E., J. Catal., 187 (1999) 257.
- 13. Garcia, C.L. and Lercher, J.A., J. Phys. Chem., 96 (1992) 2669.
- 14. Weitkamp, J., Schwark, M., and Ernst, S., J. Chem. Soc., Chem. Comm., (1991) 1133.
- 15. Meitzner, G.D., Iglesia, E., Baumgartner, J.E., and Huang, E.S., J. Catal., 140 (1993) 209.

3.4. Effects of C₃H₈ and H₂ on Catalyst Deactivation Rates